

The Astroparticle Physics Conference 34th International Cosmic Ray Conference July 30 - August 6, 2015 The Hague, The Netherlands

Observations of the Crab Nebula with Early HAWC Data

and the second hearing of the second line and the second

Francisco Salesa Greus for the HAWC Collaboration

Outline

- HAWC introduction.
- Crab Nebula observations.
- Crab Nebula time variability.
- HAWC 5σ differential sensitivity.
- Conclusions.

HAWC Gamma-Ray Observatory

Data Sets

HAWC111: Aug 2nd 2013 – Jul 7th 2014 (106 - 133 WCDs) HAWC250: Nov 26th 2014 – May 6th 2015 (247 - 293 WCDs)

Data Selection

HAWC250

- Divide the data in 9 analysis bins (nHit bins) based on the % of PMTs triggered in an event.
- First bin is defined for a given passing rate (5 kHz for HAWC250).
- The following bins are defined to decrease the rate by a factor 2.
- Apply G/H cuts, optimized on data to maximize the Crab significance:

Current HAWC G/H separation: A. Smith (#397) poster 1 GA, July 30th 3.30pm

Data Selection

HAWC250

- For the **Crab Nebula** analysis we use circular angular bins (a.k.a. top-hat).
- We estimate the background using the direct integration technique:

Astrophys. J. **595** (2003) 803-811

- The signal is defined as the excess over the background.
- Almost 10:1 (signal:back) in bin 9.

30-July-2015

Gamma-Like Event

HAWC250, nHit bin9

• Event reconstructed within 0.4° of the Crab Nebula.

Lateral distribution

Z. Hampel-Arias (#829)
 poster 2 GA, Aug 1st 3.30pm
 T. Capistrán (#692)
 poster 3 GA, Aug 4th 3.30pm

30-July-2015

Signal from the Crab Nebula

HAWC111 (283 days)

HAWC250 (150 days)

• Data errors statistical only. Simulation systematic uncertainty 40%.

30-July-2015

F. Salesa Greus - HAWC

Detection of the Crab Nebula

F. Salesa Greus - HAWC

HAWC vs Milagro

Time Variability

Method: **R. Lauer (#397) Parallel GA 18 EGAL Aug 5th 12pm**

- Measured flux in 7 days intervals between Jun 13th 2013 to Jul 9th 2014 (HAWC111).
- No evidence for the Crab Nebula emitting significantly higher w.r.t. its quiescent flux.
 30-July-2015
 F. Salesa Greus HAWC

HAWC Differential Sensitivity (5 σ)

- We use a simulated Crab-like source at dec=35° to estimate the sensitivity.
- Incoming improvements on the G/H separation and calibration, together with a better understanding of our detector response are expected to recover the predicted sensitivity.

Predicted HAWC sensitivity: Astropart. Phys. 50-52 (2013) 26-32

Conclusions

- The Crab Nebula has been detected with high significance (> 20σ) in each of the two HAWC datasets.
- There is no evidence for Crab Nebula TeV flares in the HAWC111 period.
- Incoming improvements (G/H separation, better calibration, detector response) are expected to enhance the present detector sensitivity by more than a factor 2.