THE SMALL SIZE TELESCOPE PROJECTS FOR CHERENKOV TELESCOPE ARRAY

Teresa.Montaruli@unige.ch for the CTA Consortium

SST-1M, Krakow since Nov. 2013

ASTRI, Serra la Nave, Mt. Etna, Sicily since Aug. 2014

GCT, Observatoire Paris, Meudon, since Apr. 2015

3 designs with associated prototypes proposed for the CTA array:

- A Davies-Cotton telescope with single mirror SST-1M
- Two dual-mirror Schwarzschild-Couder telescopes: SST-2M ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) and GCT (Gamma-ray Cherenkov Telescope)

REQUIRED AND GOAL SENSITIVITY

- Energy range 3-300 TeV
- SST sensitivity ≥ 2 (1.5) x full array required sensitivity above 10 (100) TeV
- Goal collection area of the Southern array > 7 km2 for E > 100 TeV ⇒ telescopes at distances of the order of 220-250 m

70

CTA SST SCIENCE

Entire plane surveyed to < 3.8 mCrab - several 100's of sources

Previous Surveys

1 mCrab = 5.07×10^{-13} photons cm⁻² s⁻¹ above 125 GeV

Experiment	Hemisphere	Galactic Plane Coverage	Energy (GeV)	Sensitivity (mCrab)
H.E.S.SI	S	$-70^{\circ} < l < 60^{\circ}, b < 2^{\circ}$	>~ 300	10 - 30
VERITAS	\mathbf{N}	$67^{\circ} < l < 83^{\circ}, -1^{\circ} < b < 4^{\circ}$	$> \sim 300$	20 - 30
ARGO-YBJ	\mathbf{N}	Northern Sky	> 300	240 - 1000
$_{ m HEGRA}$	N	$-2^{\circ} < l < 85^{\circ}, b < 1^{\circ}$	> 600	150 - 250
Milagro	\mathbf{N}	Northern Sky	> 10,000	300 - 500

Present/future Surveys

Planned surveys: Galactic plane, LMC. 1/4 of the sky

Observatory	Hemisphere	Energy Threshold	Angular Resolution	Pt. Source Sensitivity
CTA	N, S	125 GeV	$\sim 0.10^{\circ}$ at 300 GeV	$2-4~\mathrm{mCrab}$
$_{ m HAWC}$	N	2 TeV	0.30°	$20~\mathrm{mCrab}$

FLUX SENSITIVITY

Single Telescope

High Energy → High photon density → Small

Dish area ~ 4m

Array of Telescopes

Shower footprint→ Array collection

number of telescopes ~ 70

area →

In 50 h, the spectrum above 60 TeV of a PeVatron flux (~10⁻¹² ph/TeV/cm²/s, spectral index -2, -2.2) will be reconstructed with an error <10%

OPTICAL DESIGN AND OPTICAL PSF

Schwarzschild-Couder optics.

Optical PSF from ray-tracing

SILICON-BASED CAMERAS

- New technology in Imaging Cherenkov Astronomy, envisaged by E. Lorenz and applied by FACT;
- robust and stable;
- self calibrating;
- cost-effective;
- high photo-detection efficiency, low x-talk sensors, dark noise few 10 kHz;
- 30% additional exposure thanks to operation with high Moon;
- photosensor sizes available are suitable for SST cameras of diameter of 40-90 cm with 1300-2200 channels;
- uniform and mass producible.

FACT can operate at full Moon with 5 GHz/pixel Night Sky Background (NSB);

THE SST-1M PROJECT

OPTICAL PROPERTIES	UNIVERSITÉ DE GENÈVE	46		
Focal Length	5.6 m	JAGIELLONIAN		
Dish Diameter	4 m	IN KRAKOW		
Mirror Effective area (after shadowing & mirror TX)	6.47 m²	6	AGH	
Mirror Facet Size (flat-to-flat)	780 mm		CBK:	
RMS of optical time spread		colaus Copernicus tronomical Center	Czech Rep.,	
MECHANICAL PROPERTIES			Ukraine, Ireland) sh Support	
Elevation range	-16-97°		ructura	
Azitmuth range	±280° CC	ounterweight		Masts
Drive speed (min,max)	1-4000 rpm		D = 4 m	
Oscillation Modes	2.8/3.4/3.8 Hz			
Total Weight	8.6 tons			f = 5.6 m
		270	V	
J. Niemiec et al, telescope struc K. Seweryn et al., optical syster	370	Tower	88 cm	
				33 3111

CAMERA

- E. Schioppa et al, PDP, GA-IN-65
- P. Rajda et al., DAQ and Trigger (DigiCam), GA-IN-78

CAMERA PERFORMANCE

Charge resolution with different NSB 660 MHz = ½ moon at 5° from camera.

22 MHz: dark night

Next step is the deployment of a mini-array of 9 SST-2M and the production will contribute 21 more telescopes

Initial operations with prototype are ongoing

MINI-ARRAY PERFORMANCE

Simulations indicate that the mini array sensitivity will be already better than H.E.S.S. above 1 TeV

ASTRI CAMERA

Hamamatsu: Low-Crosstalk LCT1-B

THE GAMMA-RAY CHERENKOV TELESCOPE (GCT)

- Schwarzschild-Couder optics.
- Alt-Az mount.
- Designed for ease of manufacture, assembly and maintenance.
- Compact camera with full waveform readout and low cost.
- Overall width × height 5.4 m × 8 m.
- Total mass 7.8 tons.

GCT CAMERA

- 2048 pixels of size
 6 × 6 mm²...7 × 7 mm²
 (0.15°...0.2°).
- Readout/front end trigger TARGET ASIC (1 Gs/s, 12 bits), 32 modules.
- Camera trigger via Backplane PCB/FPGA.
- Dimensions 0.35 × 0.35 × 0.5 m³.
- Mass 45 kg.
- Power 450 W.
- MAPM/SiPM versions (CHEC-M/CHEC-S) under test/construction.
- Incorporates LED calibration flasher units.

TARGET MODULE

CONCLUSIONS: SST ARRAY STRATEGY

The SST array will operate in the discovery region above 50 GeV with unprecedented sensitivity. It is extremely powerful for VHE surveys.

Multiple SST designs increase prototyping effort which is a very instructive process and essential for first implementations of new technologies (dual mirror and SiPM).

Projects will provide > 20 telescopes each to CTA.

Develop as many common systems as possible.

Similar foundations for all SSTs

Common HW and SW Drives

Cameras can be interchanged between ASTRI and GCT SST-2M

Working towards common telescope control hardware and software.

Strategy will minimize SST infrastructure and operation cost.

CTA CONSORTIUM

