

Recent Improvements in the Detection of Supernovae with the IceCube Observatory

V. Baum¹, B. Eberhardt¹, A. Fritz¹, D. Heereman², B. Riedel³ for the IceCube Collaboration⁴

1 Institute of Physics, University of Mainz

² Interuniversity Institute for High Energies, Université Libre de Bruxelles, Belgium

³ Department of Physics, University of Alberta, Canada

⁴ http://icecube.wisc.edu/collaboration/authors/icrc15_icecube

The IceCube neutrino observatory

- World's largest ν -detector monitoring 1 km3 of Antarctic Ice
- 86 strings with 60 DOMs each
- Primary goal: Extraterrestrial neutrino point sources
- Supernova searches: Detect $\bar{\nu}_e$ s with $\mathcal{O}(10\,\text{MeV})$ energies by collective increase in dark rate
- Most precise detector for analyzing core collapse SN in our Galaxy

Atmospheric muon hit subtraction

- μ_{atm} with $E_{\mu} \approx 400\,\text{GeV}$ reach detector and trigger if $E \approx 550\,\mathrm{GeV}$ → induced hits main background
- Correction method fits correlation between R_{μ}^{hit} & ξ linearly (offset a, slope b)

$$\to \xi' = \xi - b \cdot R_\mu^{\mathsf{hit}} - a$$

• Sample alert below:

$$\xi = 8.59 \to \xi' = 2.44$$

Long term behavior of DOM dark rates

- Surprising observation: Average dark noise rate decrease by 3.5%
- 2% increased sensitivity to atm. $\mu s \to 50\%$ more false positive alerts

• Triboluminescence (due to hole-ice freezing) suspected to emit the light

Non-Poissonian noise characteristics from HS data

- HitSpooling (HS): Buffers all PMT hits after external request
- Complete detector information available for SN candidates

Non-Poissonian correlated and Poissonian uncorrelated components of dark noise rate

- HS data to investigate correlated dark noise at low temperatures
- Burst structure confirmed: (as mentioned by H.O. Meyer, EPL 89 (2010) 58001.)

Estimation of supernova direction

- \bullet No individual SN- ν interactions detectable due to $\mathcal{O}(10\,\text{MeV})$ energies
- ullet e^+ -direction uncorrelated to ν -direction in inverse beta decay
- → determine direction from temporal hit pattern when neutrino wavefront abruptly change its intensity
 - \rightarrow Black Hole forming SN model
- Unbinned likelihood analysis using an optimised minimizer
- Reasonable directional resolution achievable only for close-by supernovae and low neutrino masses
- Potential improvement by deploying additional distant strings

Future developments

- Assessment of sensitivity to the absolute neutrino mass
- Improvement of the energy determination
- Investigation of shorter bursts
- Extension of hitspooling to other use cases, e.g. the estimation of hadronic energy in highly energetic events from the delayed neutron capture signal