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Radio pulses from air showers 
Short (~10 to 100 ns) pulses 
from extensive air showers,  
primary energy > ~ 1017 eV 
 
In 200 - 400 LOFAR antennas on 
the ground, we measure: 
 
•  Lateral distribution of 

•  Signal power 
•  Signal arrival time 

Ø Wavefront shape 
•  Polarization 
•  Spectrum / pulse shape 
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Arrival times for the radio signal 
Measuring arrival time of 
pulse in individual 
antennas: 
 

•  Time series signal  
Apply Hilbert transform  
to get Hilbert envelope 
 
•  Define envelope 

maximum  
    as ‘the arrival time’ 
     

                ns < 5 ns!   
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Arrival times after subtracting 
plane-wave solution 

Corstanje et al., Astropart. Phys. (2015) 
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Wavefront in the shower plane 
•  Project antennas into shower plane 

•  Shower axis position: fixed using 
power-LDF 

•  Shower axis direction unknown to 
desired accuracy: free fit parameters 

•  Wavefront: arrival times as function of 
distance from shower axis 

•  Nested fitting (5 parameters): 
•  Optimize shower axis direction (2) 

•  Optimize curve-fit (3) 

5 



Best-fitting hyperbolic shape 
Corstanje et al., Astropart. Phys. (2015) 
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Conical-shaped example 
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Correlation with zenith angle 

Time lag at 
100 m from 
shower core 
 
 
Decreases 
with zenith 
angle 

Corstanje et al., Astropart. Phys. (2015) 
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Polarization measurements 

•  Each LOFAR antenna 
offers two polarizations  

    (NE-SW and NW-SE) 
•  Projected to ‘on-sky’ 

polarization when 
accounting for antenna 
model (Jones matrix) 

•  Polarizations further 
rotated to align with v x B 
and v x (v x B),  

    v is shower axis 
    B is magnetic field 

Schellart et al., JCAP (2014) 
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Radio emission mechanisms 

•  Geomagnetic contribution,  
    electric field aligned to v x B: 
•  Charge-excess contribution: electric field radially 

outward from shower core: 
  

•  Assuming these contributions account for total E-field 

•  Charge-excess fraction: 
     
where α is angle of magnetic field with shower axis  

E
!"
G ("r ) = EG êv"×B!"

a(!r ) = EC

EG

sinα

E
!"
C (
"r ) = EC cos φ êv!×B"! +EC sin φ êv!×(v!×B"! )
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Example polarization footprint 

Mostly parallel to 
the v x B-axis 
 
Small radial 
component, 
consistent with 
charge-excess 
component 
 
Angle uncertainty: 
 
 σ ~ 21°

SNR
Schellart et al., JCAP (2014) 
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Polarization results   

•  Charge-excess fraction on average 11 %, spread of 
distribution is 4 %.  

    Precision per air shower is about 2 % 
•  This depends on specific set of air showers, and on 

magnetic field and altitude of LOFAR 

•  Charge-excess fraction decreases with zenith angle, 
and increases with distance to shower axis, i.e. 
increases with opening angle from emission 
maximum 
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Variations with zenith angle  
and distance to shower axis 

Decreases with 
zenith angle 
 
Increases with 
distance to 
shower axis 
 
Agrees with 
expectations 
from theory 
and CoREAS 
(qualitatively) 

Charge-excess fraction 

Schellart et al., JCAP (2014) 
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Conclusions 
•  With LOFAR, we have obtained high-precision 

measurements of polarization and radio wavefront 
shape 

•  Hyperbolic wavefront fits all cases, some of them also 
described by cone or parabola 

•  Polarization pattern well described by dominant 
geomagnetic contribution, and sub-dominant charge-
excess component 

•  Qualitative agreement with theory and CoREAS 
simulations 
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