Interpretation of the energy spectrum observed with the Telescope Array surface detectors

E. Kido and O.E. Kalashev
for the Telescope Array Collaboration
Outline

• Introduction
• Data set of TA SD energy spectrum
• Assumptions and conditions of the model calculations
• Fit 7 years TA SD energy spectrum with the model
 – On systematic uncertainty of model calculations
 • Propagation codes (TransportCR/CRPropa)
 • Source distribution (uniform/LSS)
 • IRB models
 – Constraint on distance to the closest source
• Summary and conclusions
Telescope Array Collaboration

1High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
2The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
3Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, Tokyo, Japan
4Department of Physics and Institute for the Early Universe, Kobe Waseda University, Sandankou-cho, Sandan, Japan
5Department of Physics and The Research Institute of Natural Science, Hanyang University, Sungdong-gu, Seoul, Korea
6Department of Physics, Tokyo Institute of Technology, Tokyo, Tokyo, Japan
7Graduate School of Science, University of Tokyo, Tokyo, Japan
8Department of Physics, Yonsei University, Sandan-ku, Seoul, Korea
9Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan
10Kavli Institute for the Physics and Mathematics of the Universe (WPI), Tokai Institute for Advanced Study, 21, University of Tokyo, Kashiwa, Chiba, Japan
11Graduate School of Science, Osaka City University, Osaka, Osaka, Japan
12Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan
13Astrophysical Big Bang Laboratory, RIKES, Wakayama, Japan
14Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan
15Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
16Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
17Department of Physics, Osaka University, Osaka, Osaka, Japan
18Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNSST, Ulsan, Korea
19Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan
20Institute of Physical and Chemical Research, Waseda University, Shinjuku, Tokyo, Japan
21Department of Physics, Kobe University, Hyogo, Kakogawa, Japan
22Department of Engineering, Chiba University, Chiba, Chiba, Japan
23Department of Physics, Yonsei University, Sandan-ku, Seoul, Korea
24Department of Physics, Osaka City University, Osaka, Osaka, Japan
25Department of Physics, Inui University, Kashiwa, Chiba, Japan
26Department of Physics, Nagoya University, Sakae-ku, Nagoya, Japan
27Department of Physics and Astronomy, Ibaraki University, Mito, Mito, Ibaraki, Japan
28Department of Physics, University of Tokyo, Tokyo, Tokyo, Japan
29Department of Physics, Nagoya University, Sakae-ku, Nagoya, Japan
30Institute for Basic Science, Neuchatel, Neuchatel, Switzerland
31Department of Physics and Astronomy, Nihon University, Funabashi, Chiba, Japan
32Department of Physics, Tokai University, Kashiwa, Chiba, Japan
33Department of Physics, University of Tokyo, Tokyo, Tokyo, Japan
34Department of Physics, Ehime University, Matsuyama, Ehime, Japan
35Department of Computer Science and Engineering, Ritsumeikan University, Nagao, Nagao, Japan
36Department of Radiology and Medical Imaging, University of Tokyo, Tokyo, Tokyo, Japan
37Department of Physics, Ehime University, Matsuyama, Ehime, Japan
38Department of Radiology and Medical Imaging, University of Tokyo, Tokyo, Tokyo, Japan
39Graduate School of Information Science, Hiroshima City University, Hiroshima, Hiroshima, Japan
40School of Physics, University of Tokyo, Bunkyo-ku, Tokyo, Japan
41Department of Computer Science and Engineering, Ritsumeikan University, Nagao, Nagao, Japan
42National Institute of Radiological Sciences, Chiba, Chiba, Japan
43Department of Physics, Ehime University, Matsuyama, Ehime, Japan
44Graduate School of Information Science, Hiroshima City University, Hiroshima, Hiroshima, Japan
45School of Physics, University of Tokyo, Bunkyo-ku, Tokyo, Japan
46Department of Computer Science and Engineering, Ritsumeikan University, Nagao, Nagao, Japan
47National Institute of Radiological Sciences, Chiba, Chiba, Japan
48Department of Physics, Ehime University, Matsuyama, Ehime, Japan
49Graduate School of Information Science, Hiroshima City University, Hiroshima, Hiroshima, Japan
50School of Physics, University of Tokyo, Bunkyo-ku, Tokyo, Japan
51Department of Computer Science and Engineering, Ritsumeikan University, Nagao, Nagao, Japan
52National Institute of Radiological Sciences, Chiba, Chiba, Japan
53Department of Physics, Ehime University, Matsuyama, Ehime, Japan
54Graduate School of Information Science, Hiroshima City University, Hiroshima, Hiroshima, Japan
55School of Physics, University of Tokyo, Bunkyo-ku, Tokyo, Japan
56Department of Computer Science and Engineering, Ritsumeikan University, Nagao, Nagao, Japan
57National Institute of Radiological Sciences, Chiba, Chiba, Japan
58Department of Physics, Ehime University, Matsuyama, Ehime, Japan
59Graduate School of Information Science, Hiroshima City University, Hiroshima, Hiroshima, Japan
60School of Physics, University of Tokyo, Bunkyo-ku, Tokyo, Japan
61Department of Computer Science and Engineering, Ritsumeikan University, Nagao, Nagao, Japan
62National Institute of Radiological Sciences, Chiba, Chiba, Japan
63Department of Physics, Ehime University, Matsuyama, Ehime, Japan
5 countries, ~120 collaborators
Utah, USA
- lat. 39.30°N, long. 112.91°W

1.2 km spacing ~ 700 km²
507 SDs

12 telescopes

Surface Detector (SD)

Fluorescence Detector (FD) station

TALE SD array

FD station

MDFD

28 km

LRFD

BRFD

SD array
Introduction

Telescope Array (TA) SD observed energy spectrum \((E > 10^{18.2}\ eV)\) with high statistics

Ankle \((10^{18.70\pm0.02}\ eV)\) and break \((10^{19.78\pm0.06}\ eV)\) obtained from broken power law fit: consistent with the expectation pure proton model (“dip” model) from extragalactic sources

\(\text{Ankle} \approx 10^{18.7\ eV}\ \text{break} = 10^{19.72\ eV}\)

Berezinsky and Gregor’eva (1988)
Berezinsky et al. (2006)

→ Test pure proton model using TA SD energy spectrum in more detail
Data set

- 7 years: May 11 2008 – May 11 2015
- Zenith angle < 45 (deg.)
- $E > 10^{18.2}$ eV, 20692 events
- Energy resolution:

![Histograms showing energy resolution for different energy ranges.](Image)
• Pure proton, $E > 10^{18.2} \text{ eV}$

• Injection spectrum E^{-p}, $E_{\text{max}} = 10^{21} \text{ eV}$

• Source density $\propto (1 + z)^m$ (per comoving unit volume)
 LSS source distribution ($z < \sim 0.06$) is also considered (next slide)

• Energy losses with CMB and IRB ("best-fit model" T.M. Kneiske et al., Astron. Astrophys. 413, 807 (2004)) are considered.

• Propagation without considering magnetic fields
 $\rightarrow Z < \sim 0.7$, $B_{\text{IGMF}} < \sim 0.1 \text{ nG}$
LSS source distribution

- Number density of 2 Mass XSCz catalog $\sim 110,000$ galaxies is used.
- $5 \text{ Mpc} < D < 250 \text{ Mpc}$
- Ks magnitude < 12.5
- Weights are considered for the limit of the apparent magnitude.
- TA exposure is considered for each direction of the galaxy.
Procedure of fitting energy spectrum

Maximum likelihood with binned data

Estimator:

\[-2 \ln \lambda(\theta) = 2 \sum_{i=1}^{N} \left[\mu_i(\theta) - n_i + n_i \ln \frac{n_i}{\mu_i(\theta)} \right]\]

\(n_i\): number of events in i-th energy bin

\(\mu_i\): expected number of events in i-th energy bin

\(\Theta\): 4 fit parameters

\(E^p, (1 + z)^m, \Delta \log_{10} E, \) normalization of \(\mu_i\)

\(\Delta \log E = \log E - \log E_{\text{obs}}\) : energy shift of the data

Particle Data Group
review of statistics (2014)
Section 38.2.2.1
Best fit model energy spectrum with 7 years TA SD energy spectrum

Uniform: best fit $\chi^2(-2\ln L)/\text{d.o.f.} = 27.6/17$
LSS: best fit $\chi^2(-2\ln L)/\text{d.o.f.} = 24.5/17$
Above $10^{18.2}$ eV
With only statistical errors

Best fit values: listed below

<table>
<thead>
<tr>
<th></th>
<th>uniform</th>
<th>LSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>2.15</td>
<td>2.17</td>
</tr>
<tr>
<td>m</td>
<td>6.9</td>
<td>7.2</td>
</tr>
<tr>
<td>$\Delta \log_{10} E$</td>
<td>-0.06 (-13%)</td>
<td>-0.04 (-9%)</td>
</tr>
<tr>
<td>Normalization</td>
<td>arbitrary</td>
<td>arbitrary</td>
</tr>
</tbody>
</table>

$\Delta \log E = \log E - \log E_{\text{obs}}$: energy shift of the data

$E > 10^{18.2}$ eV
$\Leftrightarrow Z < \sim 0.7$

4-parameter fit
Best fit model energy spectrum with 7 years TA SD energy spectrum

$E > 10^{18.2} \text{ eV}$
$\Leftrightarrow Z < \sim 0.7$

4-parameter fit

Best fit values: listed below

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Uniform</th>
<th>LSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>2.15</td>
<td>2.17</td>
</tr>
<tr>
<td>m</td>
<td>6.9</td>
<td>7.2</td>
</tr>
<tr>
<td>$\Delta \log_{10} E$</td>
<td>-0.06 (-13%)</td>
<td>-0.04 (-9%)</td>
</tr>
</tbody>
</table>

Normalization arbitrary arbitrary

$\Delta \log E = \log E - \log E_{\text{obs}}$: energy shift of the data
Best fit model energy spectrum with 7 years TA SD energy spectrum

$\sigma_{\text{SYS}} \sim 3\%$ of the flux for all energies. Mainly from the calculation of the acceptance $\sigma_{\text{TOT}} = \sqrt{\sigma_{\text{STAT}}^2 + \sigma_{\text{SYS}}^2}$: Gaussian distribution

<table>
<thead>
<tr>
<th>Uniform:</th>
<th>$\chi^2/\text{d.o.f.} = 18.0/17$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic error of the flux is also considered.</td>
<td>Data is compatible with pure proton model</td>
</tr>
</tbody>
</table>

\[\Delta \log_{10} E = -0.04 \quad (-9\%) \]

Normalization: arbitrary

\[\Delta \log E = \log E - \log E_{\text{obs}} \]

<table>
<thead>
<tr>
<th>Uniform</th>
<th>p</th>
<th>2.18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
<td>6.8</td>
</tr>
</tbody>
</table>

2014/10/13
Conclusive determined fitting parameters

\[(1 + z)^m \]

<table>
<thead>
<tr>
<th>(p)</th>
<th>(m)</th>
<th>(\Delta \log_{10} E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.97</td>
<td>-0.35</td>
</tr>
<tr>
<td>-0.97</td>
<td>1</td>
<td>0.53</td>
</tr>
<tr>
<td>-0.35</td>
<td>0.53</td>
<td>1</td>
</tr>
</tbody>
</table>

Correlation coefficient

Chi\(^2\) min./d.o.f. = 18.0/17

\[p = 2.18 - 0.14 + 0.08 \text{ (stat.+sys.)} \]
\[m = 6.8 - 1.1 + 1.6 \]
\[\Delta \log_{10} E = -0.04 (-9\%) - 0.03 + 0.04 \]
Systematic uncertainty of model calculations

- Propagation codes
 - Difference of best fit parameters:
 \[\Delta p = 0.01, \Delta m = 0.1, \Delta (\Delta \log_{10} E) = 0.01 \]

- Uniform/LSS source distribution
 - Difference of best fit parameters:
 \[\Delta p = 0.02, \Delta m = 0.3, \Delta (\Delta \log_{10} E) = 0.02 \]

- IRB models
 - Difference of best fit parameters:
 \[\Delta p = 0.04, \Delta m = 0.3, \Delta (\Delta \log_{10} E) = 0.01 \]

These uncertainties are much smaller than the uncertainties of data.
Fit energy spectrum at highest energy with parameter Z_{min} (No sources $Z < Z_{\text{min}}$) → Constrain on Z_{min} by testing goodness-of-fit

$p = 2.18$ m = 6.8 fixed
uniform source distribution
d.o.f. of chi2 = 19
Upper limit of Z_{min}: $0.01 \sim 40$ Mpc (99.7% C.L.)
Summary and conclusions

• We searched compatibilities between 7 years TA SD energy spectrum and pure proton model for $E > 10^{18.2}$ eV.

• Data is compatible with this model. ($\chi^2/d.o.f. = 18.0/17$)

• Constrain on the fit parameters is obtained.
 \[p = 2.18 - 0.14 + 0.08 \text{ (stat.+sys.)} \]
 \[m = 6.8 - 1.1 + 1.6 \]
 \[\Delta \log_{10} E = -0.04 \text{ (-9%) - 0.03 + 0.04} \]
 – Difference of propagation codes, LSS/uniform source distribution, IRB model make much smaller uncertainties than these errors.

• Constraint on Z_{min} is obtained. : \(0.01 \text{ (\sim 40 Mpc) in 99.7\% C.L.} \)
BackUp slides
Best fit result from pure iron source
fit range: $E > 10^{18.7} \text{ eV}$

$p = 1.7$, $E_{\text{max}} = 728$ EeV
Chi2/d.o.f. = 17/10 (stat. + sys.)
Combined with
FD mono energy spectrum \((E: 10^{18.0-18.2} \text{ eV})\)

Best fit chi2 = 25.9/19 for uniform

Above \(10^{18} \text{ eV}\)

With systematic uncertainty

\[E > 10^{18} \text{ eV} \iff Z < \sim 0.8-0.9 \]

4-parameter fit

Best fit values: listed below

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>2.35</td>
</tr>
<tr>
<td>(m)</td>
<td>4.2</td>
</tr>
<tr>
<td>(\Delta \log_{10} E)</td>
<td>-0.06</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>arbitrary</td>
</tr>
</tbody>
</table>

\(\Delta \log E = \log E - \log E_{\text{obs}}\)

\(\alpha\): energy shift of the data

\(\alpha\): normalization of the flux
Combined 7 years (stat. + sys.)

TA SD 7 years (stat. + sys.)

\[p = 2.35 - 0.04 + 0.03 \text{ (stat. + sys.)} \]
\[m = 4.2 - 0.5 + 0.5 \]
\[\Delta \log_{10} E = -0.06 - 0.03 + 0.06 \text{ Chi2 min./d.o.f.} = 25.9/19 \]
Constraint from secondary particles

SD spectrum: discussion of $z < \sim 0.7$

Assumption:
Evolution of UHECR sources $(1+z)^m$ continues to z_{max}

Secondary gamma-rays/neutrinos are calculated under this assumption.

Emax = 200 EeV is fixed for the calculation of IceCube limit.
Pierre Auger combined energy spectrum (ICRC2013)

$E > 10^{18.2}$ eV, index p: 1.5-2.7

with acceleration limit E_{max}

Best fit chi2 = 29.4/15 for uniform

Parameter	Best fit value
p | 1.97
m | 8.3
$\Delta \log_{10} E$ | +0.04
E_{max} (eV) | $10^{19.90}$
α (normalization) | arbitrary

3% systematic uncertainties are added to the flux.

Chi2/d.o.f. > 10
Only with statistical errors

PRELIMINARY
of $(1 + z)^m$ is evaluated as P-values.