

A search for neutrinos from Gamma Ray Bursts with the IceCube

L. Brayeur¹, M. Casier¹, G. Golup² and N. van Eijndhoven¹ for the IceCube Collaboration³

Neutrino Detector

¹Vrije Universiteit Brussel, Dienst ELEM, Belgium ²Centro Atómico Bariloche, Argentina ³http://icecube.wisc.edu/collaboration/authors/icrc15_icecube

Introduction

- Gamma Ray Bursts (GRBs) together with Active Galactic Nuclei (AGN) are the most energetic phenomena in the Universe and they are among the leading candidates for the sources of ultra-high energy cosmic rays.
- Hadronic accelerations in these objects would imply neutrino fluxes.
- Neutrinos can travel straight through the Universe without deflection by magnetic fields (unlike cosmic rays) nor absorption by dust (unlike photons).
- Currently, neutrino telescopes have the sensitivity to observe such astrophysical neutrinos.
- Due to the low event rate, robust statistical methods are needed to achieve the necessary significance for signal discovery.
- Neutrinos are expected during three phases: precursor (before the γ emission), prompt (during the γ emission) and afterglow.
- Long (>2 s) and Short (≤2 s) GRBs are believed to originate from different progenitors. LGRBs could be related to the explosion of very massive stars whereas SGRBs could originate from mergers of binary compact objects.
- A separate LGRB/SGRB analysis allows the use of specific statistical methods in order to increase the sensitivity of the analysis.

- The effective area, with the angular resolution, translates the efficiency of the event selection into a flux (upper-limit) determination.
- · A novel event selection has been designed leading to an improved effective area.

Long GRBs

- Several statistical methods were compared using a toy-model simulation.
- Use of **491 LGRBs** detected by satellites (T₉₀, position, angular uncertainty, redshift).
- Generate 3 mHz of atmospheric neutrino background events uniformly distributed over the Northern Hemisphere and in time.
- Angle between events and GRBs simulated as Gaussian taking into account the GRB position uncertainty and the angular resolution of the track reconstruction.
- Prompt signal events follow a flat distribution during T₉₀ with Gaussian tails.
- Precursor events are generated 2 minutes before the GRB trigger time at the source (the redshift effect is taken into account).

Auto-Correlation:

- The method generates a distribution with the time differences of all event pairs.
- The distribution is binned and the probability of a certain number of events per bin is computed and compared between data and background.

Likelihood:

• Defines a test statistic as $T = \sup_{n_s} \left[-n_s + \sum_{i=1}^{N_{\mathrm{event}}} \log \left(\frac{n_s \, S_i}{< n_b > B_i} + 1 \right) \right]$ with S and B the signal and background PDFs and n_s (n_b) the expected number of signal (background) neutrinos.

· PLT*:

- This method considers the signal as a perturbation of the background.
- As in the Likelihood case it uses signal and background PDFs but the maximisation is performed as a function of the **perturbation location**.
- A hybrid method using Likelihood and the Auto-Correlation was also considered and it gives **promising** results.

Short GRBs

- First dedicated search for neutrinos from Short GRBs.
- Two statistical methods were compared.
- In both cases, events are selected in an angular window around the GRB which takes into account the uncertainty of the GRB position and the event reconstruction.
- Cut and Count:
- Select events on a 4 s time window around the GRB trigger time.
- Use Poisson statistics to assess the significance.
- Erlang distribution:
- The Erlang distribution gives the probability of having a time Δt to contain nevents (in this analysis n=2).
- From the time differences between observed **consecutive events**, the Δt distribution to contain 2 consecutive events in the interval is constructed.
- This distribution is compared to the expected Erlang distribution using a χ^{2} teststatistic.
- The Cut and Count method has a better sensitivity for prompt neutrinos but it is not sensitive to the other phases.
- In order to be sensitive to the three neutrinos phases, the use of the Erlang distribution is preferred.
- The event selection involves a Boosted Decision Tree (BDT) algorithm that allows an efficient background and signal separation.
- The sensitivity is presented as a function of the BDT score in order to define the optimal cut value.

We expect that the optimisation of the statistical methods both for long and short GRBs combined with a more efficient event selection can result in a neutrino detection in relation with a GRB or in stringent upper-limits on the neutrino flux.

*Ramani S. Pilla, Catherine Loader, and Cyrus C. Taylor, Phys. Rev. Lett. 95, 230202

