ICRC2015

Design Highlights and Status of the LHAASO Project

Huihai He, IHEP, CAS on behalf of the LHAASO collaboration

2015-8-3

Outline

- Introduction
- Design of the LHAASO detectors
- Engineering arrays at YBJ
- Activities at the LHAASO site
- Summary and outlook

Major Scientific Goals

GAMMA RAY ASTRONOMY

- Searching for GCR sources by measuring SED with an unprecedented sensitivity of 1% Crab unit at 50 TeV.
- Searching for TeV gamma sources, especially extended and transient ones, with an unprecedented survey sensitivity of 1% Crab unit at 3TeV.

COSMIC RAY PHYSICS

 Energy spectra for individual compositions with energy from 10 TeV to 1 EeV, where the spectrum knees are located, by hybrid observation of showers at high altitude.

Sensitivity to gamma ray sources

• Integral: 1% Crab unit @3TeV & 50TeV

Measurement of air showers at high altitude

Hybrid Detection of Extensive Air Showers by LHAASO

LHAASO

Electromagnetic Particle Detector

Steel Case Lead (0.5 cm) SC Tiles (2 cm)

Steel Case

Uniformity for 5195 units: < 10%

Stability with

 $\pm 25^{\circ}\text{C}: \pm 5\%$

Muon Detector

Water Cherenkov detector underneath soil

Found frame Electrons con-

WCDA: Survey of the VHE gamma ray sky

• <1% $I_{Crab} \rightarrow 300 \text{m} * 300 \text{m}$

WFCTA

- 32×32 pixels, 0.5° each
- 4.7 m² collection area
- <10¹⁶ eV
- 10¹⁶-10¹⁷ eV
- 10¹⁷-10¹⁸ eV

Tower FD: 12

FD1

LHAASO detector timing

1000m coax cable in 30°C change, Δ delay = 15ns!

Time-stamp Synchronization

Time stamps of >7,000 nodes to be aligned <500ps (rms).

Frequency distribution & phase locking

Distribute synchronous ADC clock with <100ps skew.

Traceability & Real-time calibration

Timing delay compensation due to environmental perturbation in hardware in real time.

"Triggerless" DAQ

---hybrid measurement of shower

 Triggering, building, (re-construction) and storage by online computers

Engineering Array @ YBJ

- ~1% of LHAASO
 - 42 EDs, 2 MDs, 9-unit WCDA, 2 telescopes, 100 shower core detectors.
- Fully implementing the LHAASO designs, including White-Rabbit-based clock distribution, "triggerless" DAQ, etc
- Has been in operation for more than 2 years.

WR performance

Cascade topology

WR CERN: 1ns

Example Showers

Event Rate and Moon Shadow

- Event rate agrees with MC and ARGO-YBJ
- Observed moon shadow by 5.8σ in 2 years.

N_{μ} purity > 97%

Long-term Stability

• 2%/year→17.8% in 10 years if the signal attenuates exponentially

MD Water Temperature

P+He Spectrum by WFCTA prototype and ARGO-YBJ

Activities @LHAASO site

- Mt. Haizi (4410 m a.s.l.), Sichuan, China
- 10 km from Yading Airport.

Summary and outlook

- The LHAASO is designed to fulfill the physical goals in gamma ray astronomy and cosmic ray physics
- Prototype arrays of ~1% LHAASO have been in operation at YBJ for more than 2 years
- LHAASO infrastructure construction has started at Mt. Haizi, Sichuan, China
- The official approval on LHAASO was drafted, waiting the chief of funding agency to sign on it
- The detector deployment will start by the end of next year