The chemical composition of ultra-high-energy cosmic rays (UHECRs) affects the observable distribution of air-shower X_{max} values, the atmospheric slant depth at which the number of secondary shower particles reaches its maximum. The observed X_{max} distributions at various primary UHECR energies can be compared with the distributions predicted by detailed detector simulations for any assumed composition and high-energy hadronic interaction model. In this poster, we present measurements of X_{max} by the Telescope Array (TA) fluorescence detectors with stereoscopic shower reconstruction. We find that for all hadronic models considered, the data collected since TA operation began in 2007 is consistent with a chiefly light UHECR composition.

Collaboration

Telescope Array

Registration number following "ICRC2015-I/"

772

Primary author: Dr STROMAN, Thomas (University of Utah)
Co-author: Dr TAMEDA, Yuichiro (Institute for Cosmic Ray Research, University of Tokyo)
Presenters: Dr STROMAN, Thomas (University of Utah); Dr TAMEDA, Yuichiro (Institute for Cosmic Ray Research, University of Tokyo)

Session Classification: Poster 1 CR

Track Classification: CR-EX