ICRC 2015

 ν_3 ν_2 ν_1 Jannik

Reconstruction of shower-like neutrino events with the KM3NeT/ORCA detector

Jannik Hofestädt (ECAP & University Erlangen-Nürnberg) on behalf of the

 $P(v_{\mu} \rightarrow v_{\mu}, NH) = P(\bar{v}_{\mu} \rightarrow \bar{v}_{\mu}, IH)$

- atmospheric (anti-)neutrino fluxes

number of events for IH vs. NH:

But other ingredients create a difference in

- (anti-)neutrino cross-section: $\sigma_{vN} \approx 2\sigma_{\bar{v}N}$

Measuring the neutrino mass hierarchy with atmospheric neutrinos

All neutrino oscillation parameters can be extracted from global fits. The relatively large value of θ_{13} (drives $v_e \leftrightarrow v_{\mu}$ oscillation) is beneficial for the determination of the remaining unknown neutrino parameters: CP-violating phase δ_{CP} and **neutrino mass hierarchy** (NMH: normal or inverted).

Standard strategy for NMH determination: probe $v_e \leftrightarrow v_{\mu}$ oscillation in
presence of matter effects.E. Akhmedov et al., JHEP 02 (2013), 082

Oscillation enhancement is maximal at resonant energy:

KM3NeT/ORCA (Oscillation Research with Cosmics in the Abyss): a dense neutrino detector in the Mediterranean Sea

KM3NeT Collaboration

KM3NeT is the next-generation underwater neutrino telescope in the Mediterranean Sea with two detectors: \Rightarrow ORCA \rightarrow NMH determination \Rightarrow talk by J. Brunner \Rightarrow ARCA \rightarrow high-energy neutrino astronomy \Rightarrow talk by P. Piattelli

- same detection principle: Cherenkov light emitted by secondary particles produced in neutrino interactions

E_{res} ~ 30GeV / ρ [g cm⁻³] **E**_{res} ≈ few GeV for Earth matter density: good prospects for atmospheric neutrinos!

Distinctive pattern in energy $\textbf{E}_{_{\!\rm V}}$ and zenith $\theta_{_{\!\rm V}}$ oscillograms shows difference for NH and IH

Main challenges:

- NH/IH difference intrinsically small
- oscillograms blurred by limited $\textbf{E}_{_{\rm V}}$ and $\textbf{\theta}_{_{\rm V}}$ accuracy
- \rightarrow accurate reconstruction essential

Possible gain in NMH sensitivity due to v / \overline{v} separation based on different Bjorken-y distributions: $\langle y_v \rangle \approx 0.5$, $\langle y_{\overline{v}} \rangle \approx 0.3$ *M. Ribordy et al., Phys.Rev. D87 (2013) 113007*

- same technology and detector design: instrumented lines anchored at the seabed and supporting multi-PMT digital optical modules (DOMs) poster by R. Bruijn
- denser array for ORCA to lower threshold to ~GeV
- line spacing & length limited by deployment constrains

Proposed detector:

- location: 40km offshore from Toulon, France, at 2475m depth
 115 strings, 20m spaced
 18 DOM/string, 6-18m spaced
- instrumented volume:
 3.6 10.8 x 10⁶ m³
- detector optimisation ongoing

Simulation

- atmospheric $v_e + v_\mu$ (+anti) flux: Bartol Agrawal et al., PRD 53, (1996) 1314
- neutrino interaction: GENIE Andreopoulos et al., Nucl. Instrum. Meth. A614 (2010), 87-104
- particle propagation: GEANT Agostinelli et al., Nucl. Instrum. Meth. A506 (2003), 250-303
- Cherenkov light emission and photon propagation in seawater
- optical background (⁴⁰K decays)

120

emission angle w.r.t. electron [deg]

Shower Phenomenology

Showers are:

- cascades of energetic particle
- * initiated by $\overline{v}_{e}^{'}$ CC, $\overline{v}^{'}$ NC and $\overline{v}_{\tau}^{'}$ CC with non-muonic τ decays
- \diamond electrons \rightarrow electromagnetic shower
- \Rightarrow hadrons \rightarrow hadronic shower
- Light emission characteristics:
- point-like light burst
- Cherenkov ring from each energetic particle
- had. showers:
 - smaller light yield than el.mag. showers
- large event-by-event fluctuations poster by J. Hofestädt

10 GeV v. CC. v=0.5 in water at 50m

Reconstruction Methodology

20

Consecutive fitting procedure:

simulations of \overline{v}_{e} CC event

Fit parameter sensitivity:

- integral \rightarrow total light yield \rightarrow energy

- shape \rightarrow shower type \rightarrow Bjorken-y

- brightest Cherenkov ring \rightarrow direction

- 1. vertex: based on hit times (assuming spherical shower)
- 2. energy & direction & y: based on number of hits and their distribution in detector

Number of hits on DOM depend on:

0.7

5 0.6

È 0.5

Signatures:

- emission characteristics conserved over large distances due to large scattering length in water
- broader angular light distribution for had. than for el.mag. showers
- $\mathbf{\hat{v}}_{e}^{'}$ CC events:
 - overlapping el.mag. & had. shower
 - mostly electron is brightest particle
 - \rightarrow estimation of inelasticity feasible

Probability to detect ≥1 photon with entire DOM

Reconstruction Performance

plateau close to instrumented volume

Plots for upgoing neutrino events (unoscillated Bartol flux) and for ORCA detector with 6m vertical spacing

Events selected according to reconstruction quality and containment criteria

- reconstruction finds electron in ve CC events
- ★ Median θ_{v,reco} resolution better than 10° for E_v ≥ 8(5)GeV in ν_e (\bar{v}_e) CC events

Bjorken-y sensitivity allows

 to account for different light yields
 in energy reconstruction

- separation on statistical basis between v_e CC, \overline{v}_e CC and \overline{v} NC
- ★ Gaussian energy resolution with RMS / <E_{reco}> better than 25% (22%) for E_v ≥ 7GeV in v_e (\bar{v}_e) CC events
- 'visible energy' = difference between incoming & outgoing neutrino(s) from primary ν interaction or τ-decay

