First results from HAWC on GRBs

Dirk Lennarz
Ignacio Taboada
for the HAWC collaboration

3rd of August 2015
Gamma-Ray Bursts (GRBs)

- Central engine (e.g., the core-collapse of a rapidly rotating star, merger of two compact stellar remnants)
- Collimated relativistic outflow (fireball)
- Internal and external shocks
- Prompt keV– MeV emission ($10^{-2} - 10^3$ s)
- Multiwavelength afterglow emission

Artist impression of a GRB. Credit: NASA/Dana Berry, SkyWorks Digital
GRBs at Higher Energies

Fermi-LAT
- High energy (HE, >100 MeV) emission delayed
- HE emission temporally extended
- GRBs produce photons at very high energies (VHE, >100 GeV)

Acceleration mechanisms?

VHE Observation of GRBs
- Acceleration mechanisms (e.g. VHE photons challenge synchrotron emission scenarios)
- Probe the extragalactic background light (EBL)
- Search for Lorentz invariance violation

Artist impression of a GRB. Credit: NASA/Dana Berry, SkyWorks Digital
> 10 GeV Gamma-Ray Observatories

Wide Field of View
Continuous Operation

TeV Sensitivity

Fermi
AGILE
EGRET

HAWC
Milagro
ARGO
Tibet AS-γ

H.E.S.S.
VERITAS
MAGIC

Artist impression of Fermi. Credit: Fermi collaboration
- Sierra Negra volcano near Puebla, Mexico
- High altitude: 4,100m
- 20,000 m² covered with 300 water Cherenkov detectors (WCD)
- 200,000 litres of purified water per WCD
- 1,200 PMTs
- Completed in March 2015
HAWC Limits on GRB 130427A

- Most powerful burst ever detected $z < 0.5$
- Longest lasting HE emission ever detected

- Low in the sky for HAWC
- 10% of final detector

Upper limits

Easily detectable for the final detector at low zenith!

HAWC GRB Observations

- Science operations started August 2, 2013
- HAWC-111: data until July 8, 2014
- Uptime fraction 83% (includes time for construction)

GRB selection

- Using LAT, GBM, Swift online tables
- Considering GRBs down to a zenith angle of 51°
- LAT: 1 (GRB 130907A), but during downtime
- GBM: ~40 (6 without data, only 1 since October 2013)
- Swift: 22 (4 without data)

✔ Analyse the 18 well localized Swift bursts
Analysis Method

- Define angular bin (search bin) around GRB position
- Estimate number of background events in search bin
- Significance of excess from Poisson distribution

Optimal search bin size

- GRB with E^{-2} spectrum
- Optimise signal (S) over square root of background (B)
- Depends on burst redshift z

Conservatively chose 3°
Detector Rate

- Search duration: T_{90}
- Rate is constant with 12 h sinusoidal oscillation on top (~0.5%)
Search Bin Rate

- ON/OFF method (at T=0 follow GRB for T_{90}, otherwise offset search bin by multiples of T_{90} in right ascension)
- Red line: scaled detector rate to match summed counts in search bin

[Graph showing time vs. rate with GRB 140423A]
Results

<table>
<thead>
<tr>
<th>GRB</th>
<th>Trigger Number</th>
<th>Time UTC</th>
<th>RA J2000</th>
<th>DEC J2000</th>
<th>Zenith Angle</th>
<th>BAT T90 s</th>
<th>Significance σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>140628A</td>
<td>602803</td>
<td>13:35:37</td>
<td>02h42m39.88s</td>
<td>-0d23m05.7s</td>
<td>26.0</td>
<td>10.5</td>
<td>-0.74</td>
</tr>
<tr>
<td>140622A</td>
<td>602278</td>
<td>09:36:04</td>
<td>21h08m41.56s</td>
<td>-14d25m09.5s</td>
<td>33.4</td>
<td>0.13</td>
<td>-0.93</td>
</tr>
<tr>
<td>140607A</td>
<td>601051</td>
<td>17:13:31</td>
<td>05h45m29.52s</td>
<td>18d54m14.4s</td>
<td>27.9</td>
<td>109.9</td>
<td>3.42</td>
</tr>
<tr>
<td>140518A</td>
<td>599287</td>
<td>09:17:46</td>
<td>15h09m00.60s</td>
<td>42d25m05.6s</td>
<td>48.6</td>
<td>60.5</td>
<td>-0.61</td>
</tr>
<tr>
<td>140430A</td>
<td>597722</td>
<td>20:33:36</td>
<td>06h51m44.61s</td>
<td>23d01m25.2s</td>
<td>31.3</td>
<td>173.6</td>
<td>-1.75</td>
</tr>
<tr>
<td>140423A</td>
<td>596901</td>
<td>08:31:53</td>
<td>13h09m08.54s</td>
<td>49d50m29.4s</td>
<td>46.9</td>
<td>134</td>
<td>0.21</td>
</tr>
<tr>
<td>140419A</td>
<td>596426</td>
<td>04:06:51</td>
<td>08h27m57.56s</td>
<td>46d14m25.3s</td>
<td>45.3</td>
<td>94.7</td>
<td>1.35</td>
</tr>
<tr>
<td>140414A</td>
<td>GA</td>
<td>06:06:29</td>
<td>13h01m14.40s</td>
<td>56d54m07.2s</td>
<td>37.8</td>
<td>0.7</td>
<td>-0.18</td>
</tr>
<tr>
<td>140408A</td>
<td>595141</td>
<td>13:15:54</td>
<td>19h22m51.83s</td>
<td>-12d35m42.5s</td>
<td>32.4</td>
<td>4.00</td>
<td>-0.02</td>
</tr>
<tr>
<td>140331A</td>
<td>594081</td>
<td>05:49:48</td>
<td>08h59m27.46s</td>
<td>02d43m02.3s</td>
<td>45.7</td>
<td>209</td>
<td>-2.18</td>
</tr>
<tr>
<td>140215A</td>
<td>586680</td>
<td>04:07:10</td>
<td>06h56m35.81s</td>
<td>41d47m11.7s</td>
<td>23.2</td>
<td>84.2</td>
<td>0.30</td>
</tr>
<tr>
<td>140206A</td>
<td>585834</td>
<td>07:17:20</td>
<td>09h41m20.26s</td>
<td>66d45m38.6s</td>
<td>47.7</td>
<td>93.6</td>
<td>-1.86</td>
</tr>
<tr>
<td>140129A</td>
<td>585128</td>
<td>03:23:59</td>
<td>02h31m33.78s</td>
<td>-01d35m43.4s</td>
<td>47.8</td>
<td>2.99</td>
<td>1.65</td>
</tr>
<tr>
<td>140114A</td>
<td>583861</td>
<td>11:57:40</td>
<td>12h34m05.16s</td>
<td>27d57m02.6s</td>
<td>11.1</td>
<td>139.7</td>
<td>0.29</td>
</tr>
<tr>
<td>131229A</td>
<td>582374</td>
<td>06:39:24</td>
<td>05h40m55.61s</td>
<td>-04d23m46.7s</td>
<td>27.7</td>
<td>13.86</td>
<td>1.23</td>
</tr>
<tr>
<td>131227A</td>
<td>582184</td>
<td>04:44:51</td>
<td>04h29m30.78s</td>
<td>28d52m58.9s</td>
<td>10.1</td>
<td>18.0</td>
<td>-0.48</td>
</tr>
<tr>
<td>131117A</td>
<td>577968</td>
<td>00:34:04</td>
<td>22h09m19.36s</td>
<td>-31d45m44.3s</td>
<td>50.9</td>
<td>11.00</td>
<td>0.27</td>
</tr>
<tr>
<td>131001A</td>
<td>GA</td>
<td>05:37:24</td>
<td>00h33m12.96s</td>
<td>25d33m25.2s</td>
<td>12.4</td>
<td>4.9</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Results

- 25,188 fake GRB positions in HAWC-111 data, at zenith angles between 0 and 60°
- Well fitted by a Gaussian, background understood to the 4σ level

\[
\chi^2 / \text{ndf} = 32.5 / 36 \\
\text{Mean} = -0.049 \pm 0.006 \\
\text{Sigma} = 1.014 \pm 0.005
\]
• Only burst above 3σ
• Accounting for trials: 2.5σ
• Detected by the BAT only, *Swift* couldn’t slew (Sun observing constraint)
• No other observations were reported for this GRB
Online Analysis

Triggered GRB analysis
- Connected to GCN
- Apply analysis to online reconstructed data
- Results for 1s, 20s, 300s within < 2 hours

Untriggered GRB analysis
- Near real time
- Low latency search of overhead sky (within 60° of zenith)
- Searching 0.1, 1, 10s
- Sensitivity cost compared to triggered search due to trials

Poster #68, J. Wood
The All-Sky Sensitivity of HAWC to Gamma-Ray Bursts
Outlook

- Search other time windows than T_{90}
- Optimised angular bin size for next stage of HAWC
- Exploring application of gamma-hadron separation cuts

HAWC is sensitive enough to detect several historical (like GRB 090510, 090902B, 130427A) [HAWC collaboration, Astropart. Phys. 35 (2012) 641]

In addition to exceptional bursts, HAWC might detect other GRBs with a rate as high as 1–2 GRBs per year [Taboada & Gilmore, NIM A 742 (2014) 276]

Even the absence of detections will be useful in constraining the highest energy of GRB spectra