

HAWC potential to observe Lorentz Invariance Violation

Lukas Nellen (ICN-UNAM), for the HAWC Collaboration*

Summary

The framework of relativistic quantum-field theories requires Lorentz Invariance. Many theories of quantum gravity, on the other hand, include violations of Lorentz Invariance at small scales and high energies. This generates a lot of interest in establishing limits on such effects,

and, if possible, observing them directly. Gamma-ray observatories provide a tool to probe parts of the parameter space of models of Lorentz Invariance Violation that is not accessible in terrestrial laboratories and man-made accelerators. Transients, especially gamma-ray bursts, are a particularly promising class of events to search for such phenomena. By

combining cosmological distances with high energy emission and short duration, emitting photons up to 30 GeV in less than a second, one can measure the energy dependence of the speed of photons to one part in 10^{16} . We will discuss the potential of HAWC to detect effects of the violation of Lorentz Invariance and place its sensitivity in the context of existing limits.

Motivation

- → Relativistic Quantum Field Theories combine Special Relativity and Quantum **Mechanics**. They require **Lorentz Invariance** for consistency
- Gravity has not been successfully integrated with Quantum Mechanics into a complete, consistent Field Theory.
- → Models of Quantum Gravity (QG) exist, many of which predict Lorentz **Invariance Violation (LIV)**
- → New, unique scale, the **Planck Scale**, is considered the natural scale for QG:

$$m_{\rm pl} = \sqrt{\hbar c/G} \approx 10^{19} \, {\rm GeV}$$

- → Not directly observable in the laboratory or contemporary universe.
- → Indirect observations using low energy effects in the laboratory or in astroparticle scenarios could be possible

Observation: Difference in arrival time

Constant speed of light

Photons emitted simultaneously will arrive simultaneously

Energy dependent speed of light

The velocity of photons and therefore their travel time could depend on their energy: Photons emitted simultaneously will arrive at different times

Variable speed of light

- → One possible realisation of LIV is by having a variable speed of light.
- → Gamma ray observatories, including HAWC, are well suited for studying this kind of scenarios

Leading Term

$$v \approx c \left(1 + \frac{n+1}{2} \left(\frac{E_{\gamma}}{E_{\text{OG}}^{(n)}}\right)^n\right)$$

 E_{γ} photon energy

 $E_{OG}^{(n)}$ QG parameter, to be studied

The order of the leading term depends on the model.

ightharpoonup Theoretically well motivated: n=1 and n=2.

Propagation time

Nearby objects

E.g., Pulsars

$$\Delta t = \frac{(n+1)d}{2c} \frac{\Delta E^n}{(E_{OG}^{(n)})^n} \approx \frac{(n+1)d}{2c} \frac{E_{\max}^n}{(E_{OG}^{(n)})^n}$$

where d the distance to the object and $\Delta E^n = E_{\rm max}^n - E_{\rm min}^n \approx E_{\rm max}^n$.

Distant objects

E.g., Gamma Ray Bursts (GRB) or AGN flares

→ Have to take into account curvature and red-shift along path

$$\Delta t = \frac{n+1}{2} H_0^{-1} \frac{E_{\text{max}}^n}{(E_{\text{OG}}^{(n)})^n} \int_0^z \frac{(1+z')^n}{h(z')} dz'$$

with $h(z) = \sqrt{\Omega_{\Lambda} + \Omega_m (1+z)^3}$ and $H_0 = 70 \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$, $\Omega_{\Lambda} = 0.7$, $\Omega_m = 0.3$.

Existing lower limits for $E_{OG}^{(n)}$ and potential of HAWC

Source	Experiment	Limit on $E_{QG}^{(1)}$	Limit on $E_{QG}^{(2)}$	Distance	Δt	E_{max}
Crab	VERITAS	$1.7 \cdot 10^{17} \text{GeV}$	$7 \cdot 10^9 \text{GeV}$	2.2 kpc	$100 \mu s$	120 GeV
GRB090510	Fermi/LAT	$9.1 \cdot 10^{19} \mathrm{GeV}$	$1.3 \cdot 10^{11} \text{GeV}$	z = 0.903	combined methods	
PKS 2155-304	H.E.S.S.	$2.1 \cdot 10^{18} \mathrm{GeV}$	$6.4 \cdot 10^{10} \mathrm{GeV}$	z = 0.116	likelihood fit	
PG 1553+113	H.E.S.S., Fermi/LAT	$4.3 \cdot 10^{17} \mathrm{GeV}$	$2.1 \cdot 10^{10} \text{GeV}$	$z = 0.49 \pm 0.04$	combined analysis	
HAWC Pulsar ref.	HAWC	$10^{17}\mathrm{GeV}$	$9 \cdot 10^9 \text{GeV}$	2 kpc	1 ms	500 GeV
HAWC GRB ref.	HAWC	$4.9 \cdot 10^{19} \mathrm{GeV}$	$1.1 \cdot 10^{11} \text{GeV}$	z = 1	1 s	100 GeV

Best published lower limits on $E_{QG}^{(n)}$ from **pulsar**, **GRB**, and **AGN** flare observations. **Estimated potential** of HAWC to set limits for reference scenarios for **pulsar** and **GRB** observations. The reference scenarios use only the difference of the arrival between the highest and lowest energy photon. More sophisticated analysis are expected to produce more stringent limits.

Potential limits: GRB

- Reference scenario motivated by GRB090510 and **GRB130427A**
- → HAWC can observe higher energy photons than Fermi/LAT
- **→ Large field of view** (> 2 sr) and large duty cycle (> 90%) increase HAWC's chances of detecting an interesting GRB, compared to Air Cherenkov Telescopes (ACT)

Reference scenario motivated by Fermi/LAT observation.

Combined analysis with other experiments should potentially improve limits further.

Potential limits: Pulsars

- **→ Large field of view (> 2 sr) and large duty** cycle (> 90%) allow for long-term monitoring of a large number of potential sources.
- → HAWC pulsar search and monitoring under development.
- → Reference scenario might be too optimistic about $E_{\gamma,\text{max}}$ and too pessimistic about time resolution of structures.

Pulsars are not setting the most stringent limits. It is nevertheless interesting to study all possible channels.

Potential limits: AGN flares

HAWC limits expected to be, at best, comparable to limits from Air Cherenkov Telescopes. Unless:

- ➡ Early detection proves relevant: Large field of view (> 2 sr) increases HAWC's chances here
- Event hard to observe for ACT's: HAWC's large duty cycle (> 90%) increases chance of observation

detailed

Observations with ACT expected to be more

Will need better analysis than ΔE vs Δt .