Measurements of X_{max} above 10^{17} eV with the fluorescence detector of the Pierre Auger Observatory

CR-EX 1176 – PoS 420

31st July, 2015

Alessio Porcellia on behalf of Pierre Auger Collaborationb

aKarlsruhe Institute of Technology, Karlsruhe, Germany, currently in Department of Nuclear Physics, University of Geneva, Geneva, Switzerland

bObservatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

(full author list: http://www.auger.org/archive/authors_2015_06.html)
2 independent datasets:

Standard dataset (18382 events)

- Known by the scientific community (Phys. Rev. D90 12 (2014) 122005 [1409.4809v3])
- Measurement only down to $10^{17.8}$ eV
- 24 fluorescence telescopes with 2° to 30° FoV in elevation at 4 sites:
 Los Leones (LL), Loma Amarilla (LA), Los Morados (LM), Coihueco (CO)
- All non-HeCo events (see below)

HeCo dataset (5490 events)

- Energy span: $10^{17} \leq E \leq 10^{18.3}$ eV
- Period between 01.06.2010 and 15.08.2012
- 6 standard fluorescence telescopes at CO sites
- 3 High Elevation Auger Telescopes (HEAT)
HEAT (High Elevation Auger Telescopes)

3 fluorescence telescopes with a sampling 2 times faster than standard.
Operation in downward (left) and upward (right) modes:

2° to 30° FoV in elevation

30° to 60° FoV in elevation

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Analysis method</th>
<th>Systematic Uncertainties</th>
<th>Results</th>
<th>Conclusions</th>
<th>Backups</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Porcelli for Pierre Auger</td>
<td>X_{max} above 10^{17} eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420)</td>
<td></td>
<td></td>
<td>31.07.2015</td>
<td>2/11</td>
</tr>
</tbody>
</table>
HeCo (HEAT+CO): extended field of view

Data Set	Analysis method	Systematic Uncertainties	Results	Conclusions	Backups
A. Porcelli for Pierre Auger | X_{max} above 10^{17} eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420) | | 31.07.2015 | 3/11
HeCo (HEAT+CO): extended field of view

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Analysis method</th>
<th>Systematic Uncertainties</th>
<th>Results</th>
<th>Conclusions</th>
<th>Backups</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Porcelli for Pierre Auger</td>
<td>X_{max} above 10^{17} eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420)</td>
<td></td>
<td>31.07.2015</td>
<td>3/11</td>
<td></td>
</tr>
</tbody>
</table>
HEAT in downward mode

Cross-checks with Coihueco (CO):

CO-HEAT (downward)

- **Data**
 - Entries: 464
 - Mean: 2.26 ± 1.77
 - Std. Dev.: 38.05 ± 1.42

- **MC**
 - Entries: 1296
 - Mean: 1.95 ± 1.07
 - Std. Dev.: 38.45 ± 0.88

- **\(X_{\text{max}}\) difference between CO and HEAT compatible with reconstruction systematic uncertainties** (see systematic uncertainties)

- **Data and MC simulation are in agreement: good detector knowledge**

Data Set
A. Porcelli for Pierre Auger | \(X_{\text{max}}\) above \(10^{17}\) eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420)

Analysis method

Systematic Uncertainties

Results

Conclusions
31.07.2015

Backups
4/11
Same analysis method reported in Phys.Rev. D90 12 (2014) 122005 [1409.4809v3]

Overview of the data selection:

<table>
<thead>
<tr>
<th>Good data taking condition</th>
<th>good data taking periods and good camera calibration constants require measured aerosol profile reject dust periods (VAOD@3km<0.1) reject events with too much cloud contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good (X_{\text{max}}) and Energy measurement</td>
<td>required hybrid geometry reconstruction Minimum track length observed (X_{\text{max}}), with expected resolution <40 g cm(^{-2}) reduced (\chi^2) of profile fit normal distributed</td>
</tr>
<tr>
<td>Field of view analysis</td>
<td>fiducial field of view to unbias the dataset</td>
</tr>
<tr>
<td>HeCo specific</td>
<td>considered higher trigger rate in Surface Detector stations for Fe-like events Surface Detector, HEAT and CO must be able to trigger simultaneously</td>
</tr>
</tbody>
</table>
End-to-End cross-check with MC simulations

Proton, Iron and 50:50 mixture, generated (lines) VS reconstructed (markers)

Generated and reconstructed are compatible, with a residual bias in the lowest energy bin: correction using half of the 50:50 mixture (the largest), plus a symmetric systematic uncertainties accounted.

Data Set

- **Analysis method**: Systematic Uncertainties

Results

- **Conclusions**: A. Porcelli for Pierre Auger | X_{max} above 10^{17} eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420)

Backups

- 31.07.2015

\[\langle X_{\text{max}} \rangle \text{ systematic uncertainties & resolutions} \]

- reconstruction bias (only left) and detector resolution (right)
- offset in time between SD-FD, calibration and telescopes alignment
- analysis
- atmospheric uncertainty in the geometry reconstruction and fluorescence light yield
2 data set results...

Standard VS HeCo dataset

Average of X_{max}

<table>
<thead>
<tr>
<th>Average of X_{max} (g/cm²)</th>
<th>$\log_{10}(E/eV)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeCo dataset</td>
<td>17.0</td>
</tr>
<tr>
<td>Standard dataset</td>
<td>600</td>
</tr>
</tbody>
</table>

Std. deviation of X_{max}

<table>
<thead>
<tr>
<th>Std. deviation of X_{max} (g/cm²)</th>
<th>$\log_{10}(E/eV)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeCo dataset</td>
<td>20.0</td>
</tr>
<tr>
<td>Standard dataset</td>
<td>60.0</td>
</tr>
</tbody>
</table>

Compatibility inside the expected uncorrelated systematic uncertainties (~ 7 g cm$^{-2}$)

Data Set
A. Porcelli for Pierre Auger

Analysis method
X_{max} above 10^{17} eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420)

Systematic Uncertainties

Results

Conclusions
31.07.2015
Backups
8/11
Moments from flat acceptance data + exponential tails (Λ-η) correction

Average of X_{max}

Std. Deviation of X_{max}

(with Proton and Iron pure composition for EPOS-LHC, Sibyll2.1, QGSJetII-04)

AUGER, PRELIMINARY

A. Porcelli for Pierre Auger | X_{max} above 10^{17} eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420)

Conclusions

Backups

31.07.2015 9/11
Low energy: largest mass dispersion, dominated by intermediate and heavy primaries

High energy: from the lightest at $\sim 10^{18.4}$ eV to heavier with less dispersion of masses.

AUGER, PRELIMINARY

EPOS-LHC (Mean of $\ln A$)

EPOS-LHC (Variance of $\ln A$)
In A moments: QGSJetII-04

Low energy: largest mass dispersion, dominated by intermediate and heavy primaries

High energy: from the lightest at \(\sim 10^{18.4} \) eV to heavier with less dispersion of masses.
Conclusions

- X_{max} measured in ~ 3 decades of energy (preliminary!):
 extend the lower energy range down to 10^{17} eV
- $\langle \ln A \rangle$ as a function of $\log (E/\text{eV})$
 shows a non-constant composition in this energy range:
 the lightest at $\sim 10^{18.4}$ eV,
 heavier at lower and at higher energies

Data Set
- Analysis method
- Systematic Uncertainties
- Results
- Conclusions
- Backups

A. Porcelli for Pierre Auger | X_{max} above 10^{17} eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420)

- Conclusions
- Backups

31.07.2015 11/11
Backups
Study of the field of view bias

\[\langle X_{\text{max}} \rangle \text{ vs. } X_{\text{low}} \text{ or } X_{\text{up}} \text{ limit} \]

\[\log_{10}(E_{\text{cal}}/\text{eV}) \text{ Range: 17.5 ÷ 17.6} \]

No limit of the sample: asymptotic average \(\langle X_{\text{max}}^{\infty} \rangle \)

Data Set

A. Porcelli for Pierre Auger

Analysis method

\(X_{\text{max}} \) above \(10^{17} \) eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420)

Systematic Uncertainties

Results

Conclusions

31.07.2015

Backups

12/11
Study of the field of view bias

X_{max} distribution

$\log_{10}(E_{\text{cal}}/\text{eV})$ Range: 17.5 ÷ 17.6

$\langle X_{\text{max}} \rangle$ vs. X_{low} or X_{up} limit

$\log_{10}(E_{\text{cal}}/\text{eV})$ Range: 17.5 ÷ 17.6

Large X_{up}: $\langle X_{\text{max}} \rangle$ still $\langle X_{\infty} \rangle$

Data Set Analysis method Systematic Uncertainties Results Conclusions Backups
A. Porcelli for Pierre Auger X_{max} above 10^{17} eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420) 31.07.2015 12/11
Study of the field of view bias

X_{max} distribution

$\log_{10}(E_{\text{cal}}/\text{eV}) \text{ Range: } 17.5 ÷ 17.6$

$\langle X_{\text{max}} \rangle$ vs. X_{low} or X_{up} limit

$\log_{10}(E_{\text{cal}}/\text{eV}) \text{ Range: } 17.5 ÷ 17.6$

Still $\langle X_{\text{max}} \rangle \sim \langle X_{\text{max}}^{\infty} \rangle$: need a study on the distribution tails?

Data Set Analysis method Systematic Uncertainties Results Conclusions Backups
A. Porcelli for Pierre Auger X_{max} above 10^{17} eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420) 31.07.2015 12/11
Study of the field of view bias

\(X_{\text{max}} \) distribution

log_{10}(E_{\text{cal}}/\text{eV}) Range: 17.5 ÷ 17.6

\(\langle X_{\text{max}} \rangle \) vs. \(X_{\text{low}} \) or \(X_{\text{up}} \) limit

log_{10}(E_{\text{cal}}/\text{eV}) Range: 17.5 ÷ 17.6

Too small \(X_{\text{up}} \): \(\langle X_{\text{max}} \rangle < \langle X_{\text{max}}^{\infty} \rangle \) (biased!)

Data Set
A. Porcelli for Pierre Auger | \(X_{\text{max}} \) above \(10^{17} \) eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420)

Analysis method

Systematic Uncertainties

Results

Conclusions

Backups

31.07.2015
12/11
Study of the field of view bias

X_{max} distribution

$\log_{10}(E_{\text{cal}}/\text{eV})$ Range: 17.5 ÷ 17.6

$\langle X_{\text{max}} \rangle$ vs. X_{low} or X_{up} limit

$\log_{10}(E_{\text{cal}}/\text{eV})$ Range: 17.5 ÷ 17.6

Small X_{low}: $\langle X_{\text{max}} \rangle$ still $\langle X_{\infty} \rangle$
Study of the field of view bias

\[\langle X_{\text{max}} \rangle \text{ vs. } X_{\text{low}} \text{ or } X_{\text{up}} \text{ limit} \]

\[\log_{10}(E_{\text{cal}}/\text{eV}) \text{ Range: } 17.5 \div 17.6 \]

Too large \(X_{\text{low}} \): \(\langle X_{\text{max}} \rangle > \langle X_{\text{max}}^\infty \rangle \) (biased!)
The method uses the data itself optimizing the statistic

$$\log_{10}(E_{\text{cal}}/\text{eV}) \quad \text{Range: } 17.5 \div 17.6$$

$$X_{\text{low}} < X_{\text{fid}}^{\text{low}} \quad \text{and} \quad X_{\text{up}} > X_{\text{fid}}^{\text{up}}: \langle X_{\text{max}} \rangle \simeq \langle X_{\text{max}}^\infty \rangle \quad \text{(unbiased!)}$$

Data Set: A. Porcelli for Pierre Auger
Analysis method: X_{max} above 10^{17} eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420)
Systematic Uncertainties
Results: 31.07.2015
Conclusions
Backups: 13/11