

Report of the Working Group on the Composition of Ultra-High Energy Cosmic Rays

R. Abbasi, J. Bellido, J. Belz, V. de Souza, W. Hanlon, D. Ikeda, J.P. Lundquist, P. Sokolsky, T. Stroman, Y. Tameda, Y. Tsunesada, <u>M. Unger</u> and A. Yushkov for the Pierre Auger and Telescope Array Collaborations

UHECR Working Groups

- Spectrum (TA+Auger)
- Anisotropy (TA+Auger), \rightarrow ICRC #607, Astrophys.J. 794 (2014) 2, 172
- Composition (TA+Auger) \rightarrow this presentation
- Hadronic Interactions (IC+TA+Auger)
- Multi-Messenger (IC+Auger+TA)
- Anisotropy (IC+Auger+TA) \rightarrow ICRC #346

UHECR Symposium 2012, CERN

Data Samples

Auger:

- 8 years
- hybrid (at least one surface detector station)
- 24 telescopes
- 19,759 events above 10^{17.8} eV, 7365 events above 10^{18.2} eV
- PRD 90 (2014) 12, 122005

TA:

- 5 years
- hybrid (at least three surface detector station)
- Middle Drum telescopes (MD)
- 438 events above 10^{18.2} eV
- APP 64 (2014) 49

Composition from Shower Maximum (X_{max})

Telescope Array Collaboration, APP 64 (2014) 49:

"[...] good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models."

Pierre Auger Collaboration, PRD 90 (2014) 12, 122005:

"[...] simulations have been performed using the three contemporary hadronic interaction models (QGSJETII-04, EPOS-LHC, SIBYLL2.1). [...] there is an evolution of the average composition of cosmic rays towards lighter nuclei up to energies of 10^{18.27} eV. Above this energy, the trend reverses and the composition becomes heavier."

Average Shower Maximum, $\langle X_{max} \rangle$

Average Shower Maximum, $\langle X_{max} \rangle$

Different Analysis Strategies

Steven Saffi, University of Adelaide

Auger:

- minimize measurement bias
- result: " $\langle X_{max} \rangle$ in atmosphere"
- compare to: simulations at generator level

TA:

- maximize statistics
- result: " $\langle X_{max} \rangle$ in detector"
- compare to: simulations including detector effects

Ben Stokes, University of Utah

Different Analysis Strategies

Auger X_{max} results:

- \blacktriangleright ~ no acceptance bias
- **TA** X_{max} results:
 - includes acceptance bias

How to Compare $\langle X_{max} \rangle$ of the X_{max} Distributions from TA and Auger

Step 1: Construct a model of the X_{max} distribution that describes the Auger data

proton, helium, nitrogen, iron

Pierre Auger Collaboration, PRD 90 (2014) 12, 122006

How to Compare $\langle X_{max} \rangle$ of the X_{max} Distributions from TA and Auger

Step 1: Construct a model of the X_{max} distribution that describes the Auger data

here: use QGSJETII-03 for fitting composition fractions \rightarrow reasonable agreement with data

How to Compare $\langle X_{max} \rangle$ of the Auger and TA Data

Step 2: Pass this "Auger-like" X_{max} distribution through TA detector simulation, reconstruction and analysis

average difference: $\langle \Delta \rangle = (2.9 \pm 2.7 \text{ (stat.)} \pm 18 \text{ (syst.)}) \text{ g/cm}^2$

Summary and Outlook

Comparison:

- account for acceptance bias included in TA result
- average X_{max} agrees within uncertainties, $\langle \Delta \rangle = (2.9 \pm 2.7 \text{ (stat.)} \pm 18 \text{ (syst.)}) \text{ g/cm}^2$

Next Steps:

- improve model of X_{max} distribution by using EPOS-LHC (describes Auger data better than QGSJetII-03)
- compare full distributions
- repeat analysis for new TA analyses with higher statistics (see John's talk later this session)

...

Mean and Standard Deviation of X_{max} Distribution

