Combined Analysis of the High-Energy Cosmic Neutrino Flux at the IceCube Detector

Lars Mohrmann for the IceCube Collaboration

The 34th International Cosmic Ray Conference 30 July – 6 August, 2015 The Hague, The Netherlands

Cosmic Neutrinos at IceCube

Cosmic neutrino flux discovered!

Sources still unknown

> Need precise measurement of

- Energy spectrum
- Flavor composition
- → conclusions on sources possible

Searching for Cosmic Neutrinos with IceCube

Search for upgoing tracks

■ Effective area: >> detector

Muon background: negligible

Channel: charged-current ν_μ

Sky coverage: northern sky

> Search for starting events

■ Effective area: ≤ detector

• Muon background: yes

Channel: all

Sky coverage: full

Searching for Cosmic Neutrinos with IceCube

Search for partially contained showers

- **New!** \rightarrow PoS(ICRC2015)1109
- Enlarge effective area at high energies

> Search for "double pulse" events

- New! \rightarrow PoS(ICRC2015)1071
- Identify tau neutrinos

"partially contained shower"

Combined Analysis

Combine results from 8 different searches

ID	Signatures	Observables	Period
T1	throughgoing tracks	energy, zenith	2009–2010
T2	throughgoing tracks	energy, zenith	2010–2012
S 1	cont. showers	energy	2008-2009
S2	cont. showers	energy	2009–2010
H1*	cont. showers, starting tracks	energy, zenith	2010–2014
H2	cont. showers, starting tracks	energy, zenith, signature	2010–2012
DP^*	double pulse waveform	signature	2011–2014
PS*	part. cont. showers	energy	2010–2012

- > Determine energy spectrum and flavor composition in a joint fit
- Full details can be found in:
 M. G. Aartsen et al. (IceCube Collaboration), "A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube", ApJ, in press arXiv:1507.03991

Analysis Method

"Forward-folding" likelihood fit

- Fold models for background and signal fluxes with detector response
 - → templates in observable space
- Compare templates with experimental data
- Vary model parameters until best agreement is reached

Models

- **Atmospheric muons CORSIKA** simulation
- **Conventional atmospheric neutrinos** HKKMS (Honda et al. 2007)
- **Prompt atmospheric neutrinos** ERS (Enberg et al. 2008)
- **Astrophysical neutrinos** ???

Signal Hypotheses

Energy spectrum

- **Benchmark model:** Fermi acceleration at shock fronts $\rightarrow \Phi_{\nu} \propto E^{-2}$
- Actual spectrum depends on source class
- Hypothesis A: $\Phi_{
 m V} = \phi imes \left(rac{E}{100\,{
 m TeV}}
 ight)^{-\gamma}$
- Hypothesis B: $\Phi_{v} = \phi \times \left(\frac{E}{100\,\mathrm{TeV}}\right)^{-\gamma} \times \exp(-E/E_{\mathrm{cut}})$

Image credit: NASA, ESA, and Zolt Levay (STScl)

Signal Hypotheses

Energy spectrum

- **Benchmark model:** Fermi acceleration at shock fronts $\rightarrow \Phi_{\nu} \propto E^{-2}$
- Actual spectrum depends on source class

• Hypothesis A:
$$\Phi_{\nu} = \phi \times \left(\frac{E}{100\,\mathrm{TeV}}\right)^{-\gamma}$$

• Hypothesis B:
$$\Phi_{\nu} = \phi \times \left(\frac{E}{100\,\mathrm{TeV}}\right)^{-\gamma} \times \exp(-E/E_{\mathrm{cut}})$$

Image credit: NASA, ESA, and Zolt Levay (STScI)

> Flavor composition

$$\hbox{$ \bullet $ Pion-decay: } \qquad \nu_e:\nu_\mu:\nu_\tau=1:2:0 \qquad \longrightarrow \qquad \nu_e:\nu_\mu:\nu_\tau\sim1:1:1$$

• Muon-damped:
$$\nu_e: \nu_\mu: \nu_\tau = 0: 1: 0$$
 \longrightarrow $\nu_e: \nu_\mu: \nu_\tau \sim 0.22: 0.39: 0.39$

Fit: allow any composition

> Assume isotropic flux and $\, \nu_e : \nu_\mu : \nu_\tau = 1 : 1 : 1 \,$

- > Assume isotropic flux and $\,
 u_e :
 u_\mu :
 u_ au = 1 : 1 : 1 \,$
- > Best fit hypothesis A:

$$\Phi_{v} = (7.0^{+1.0}_{-1.0}) \times 10^{-18} \,\text{GeV}^{-1} \,\text{s}^{-1} \,\text{cm}^{-2} \times \left(\frac{E}{100 \,\text{TeV}}\right)^{-2.49 \pm 0.08}$$

all-flavor!

 $lacksquare E^{-2}$ excluded at $4.6\,\sigma$

- lacksquare Assume isotropic flux and $\,
 u_e:
 u_\mu:
 u_ au=1:1:1\,$
- > Best fit hypothesis A:

$$\Phi_{V} = (7.0^{+1.0}_{-1.0}) \times 10^{-18} \,\text{GeV}^{-1} \,\text{s}^{-1} \,\text{cm}^{-2} \times \left(\frac{E}{100 \,\text{TeV}}\right)^{-2.49 \pm 0.08}$$

- E^{-2} excluded at $4.6\,\sigma$
- > Best fit hypothesis B:

$$\Phi_{v} = \frac{\left(8.0^{+1.3}_{-1.2}\right) \times 10^{-18} \,\text{GeV}^{-1} \,\text{s}^{-1} \,\text{sr}^{-1} \,\text{cm}^{-2}}{\times \left(\frac{E}{100 \,\text{TeV}}\right)} \times \left(\frac{E}{100 \,\text{TeV}}\right)^{-2.31 \pm 0.15}$$

$$\times \exp\left(-E/\left(2.7^{+7.7}_{-1.4}\right) \,\text{PeV}\right).$$

- preferred over hypothesis A by $1.2\,\sigma$
- > Both models describe the data well

> Profile likelihood scan

Profile likelihood scan

• E^{-2} , no cut-off

Profile likelihood scan

Profile likelihood scan

> All-flavor neutrino energy spectrum

Projection of Sensitivities

Use most recent event samples

- T2 → throughgoing tracks
- H2 → contained showers + starting tracks
- PS → partially contained showers
- DP → double pulse waveform events

Use current best-fit fluxes as input

- Perform analysis with the "Asimov data set" (Cowan et al. 2011)
 - One "representative" data set (based on input flux)
 - obtain median sensitivity

Sensitivity – Energy Spectrum

- > Hypothesis A true
 - $E^{-2.49}$, no cut-off
 - $ightarrow E_{
 m cut} > 7.7 \, {
 m PeV} \, \left(2 \, \sigma \, {
 m C.L.}
 ight)$ for 10 years of data

Sensitivity – Energy Spectrum

Sensitivity – Flavor Composition

14

Summary

- Combined analysis of cosmic neutrino flux
 - Take into account all signatures
 - Sensitive from ~10 TeV multi-PeV

- Most precise characterization of the flux obtained so far
 - Energy spectrum
 - Flavor composition

Projection of sensitivities

