Stellar evolution constrains primordial black holes as dark matter candidates

M.S. Pshirkov1,2, F. Capela3, P.G. Tinyakov4

1Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky prospekt 13, 119992, Moscow, Russia
2Institute for Nuclear Research of the Russian Academy of Sciences, 117312, Moscow, Russia
3DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB30WA, United Kingdom
4Université Libre de Bruxelles, Service de Physique Théorique, CP225, 1050, Brussels, Belgium
PBHs as Dark Matter candidate

• Could be a viable alternative to particle dark matter

<table>
<thead>
<tr>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Don’t need to alter extremely well-tested SM</td>
<td>• Very difficult to form ➔ very special density perturbation spectrum in the very Early Universe</td>
</tr>
<tr>
<td>• Very cold and collisionless* (*advantage at the moment)</td>
<td>• Extremely small cross-section: $\sigma \approx 10^{-56} ,(m/1g)^2 , \text{cm}^2$</td>
</tr>
<tr>
<td>• Dark</td>
<td></td>
</tr>
<tr>
<td>• Extremely small cross-section: $\sigma \approx 10^{-56} ,(m/1g)^2 , \text{cm}^2$</td>
<td></td>
</tr>
</tbody>
</table>
PBHs: their mass spectrum

• No specific mass scale (except, maybe, $M_{Pl} = 10^{-5}$ g)
• Due to the Hawking evaporation we could get rid of all PBH with $m < 10^{15}$ g

$$t_H = \frac{5120 \pi G^2 M_{BH}^3}{\hbar c^4} = 10^{64} \left(\frac{M}{M_{\text{Sun}}} \right)^3 \text{ years}$$

• At higher masses PBH could contribute to DM considerably

- 10^{17} g
- 10^{26} g

γ-rays from evaporation

? microlensing, CMB distortions, galactic disc survival, wide binaries, etc.

• 10^{17}-10^{26} g window remains mostly unconstrained
Closing the gap

- As stated above, PBHs are exceedingly small:
 \[r_{BH} = 10^{-8} \left(\frac{M_{BH}}{10^{20} \text{ g}} \right) \text{ cm} \]
- Could considerably interact only with extremely dense matter

- The best candidate – neutron stars (NSs) with \(\rho \sim 10^{15} \text{ g/cm}^3 \).

- If a PBH *somehow* get captured by a NS, the latter one would be destroyed in a very short time, less than \(10^6 \) years – thus simple observations of NS could be constraining.
How to get PBH inside NS?

- There are two similar ways:
 A. Simple capture by NS itself
 B. multi-staged
 I. Formation of DM mini-halo during the star-formation process
 II. Capture of DM from that mini-halo
 III. Sinking of DM closer to the central regions of the star
 IV. Supernova explosion/NS formation. The NS would inherit some fraction of DM. That would result in constraints on fraction of PBH in DM.

- We will mostly discuss the second option.
DM mini-halo

- GMC ($M=10^5 M_\odot$, $\rho \sim 500 \text{ cm}^{-3}$) fragmenting into much smaller and denser prestellar cores ($M \sim M_\odot$, $\rho \sim 10^6 \text{ cm}^{-3}$)
- Some tiny fraction of the DM is gravitationally bound to PC:

$$\rho_{DM,\text{bound}} = \rho_{DM} \frac{4\pi}{3} \left(\frac{3|\phi_0|}{\pi v^2} \right)^{3/2}$$

- Effect \simvelocity dispersion$^{-3}$, \simDM concentration \Rightarrow interested in regions with high abundance of slow-moving DM
- The best candidate would be globular clusters of primordial origin – could form already at $z=10-12$
- The DM density could be as high as 10^4 GeV/cm^{-3} in the very beginning, $v \sim 7 \text{ km/s}$.
- The effect is easily rescalable.
DM mini-halo. Adiabatic contraction

- Prestellar core undergoes process of contraction

- DM follows the gravitational pull and concentrates in the deepening gravitational well

- The process takes much longer than the free-fall time $t_{ff} \sim (G\rho)^{-1/2}$, so certain adiabatic invariants are conserved:
 - Angular momentum (central field)
 - $\int pdq = ET$

- That allows us to perform simulations: inject 30 millions test particles and evolve their orbits in the gravitational field of the gradually increasing central mass. Finally, we get some cuspy distribution $\rho(r) \sim r^{1.5}$
DM mini-halo. Adiabatic contraction

- Most of the particles reside on the very elongated orbits: there are much more particles that ever come within some r, than there within r at any given moment.
- Enhancement factor is around 2×10^3 for $r=R_\odot$
- This could be a very large reservoir for DM – if we could only capture it effectively. Now everything is defined by DM-nucleon interactions
- From now on we would stick to one particular candidate – PBHs.
Capture of PBHs from mini-halo

• The capture proceeds in two stages:
 1. PBH spends most of its time outside the star, losing small fraction of its energy at each subsequent passage via dynamical friction

\[
t \sim 4 \times 10^2 \tau \sim \frac{100 \pi R_*^{5/2} v_{\text{esc}}^2}{Gm_{\text{BH}} \sqrt{GM_* \ln \Lambda}} \sim 2 \times 10^8 \text{ yrs} \left(\frac{10^{22} \text{ g}}{m_{\text{BH}}} \right)
\]

2. when the PBH is fully inside the star it starts to gradually lose energy and sink to the centre. The duration of this stage is considerably shorter

• If in the lifetime of the star \(N_{\text{BH}} \geq 1 \) PBHs of mass \(m_{\text{BH}} \) would sink to the centre, we would have some constraints:

\[
\frac{\Omega_{\text{PBH}}}{\Omega_{\text{DM}}} \leq \frac{1}{N_{\text{BH}}}
\]
Constraints
Conclusions

• Mere observations of compact objects in regions with high DM density could considerably constrain PBH as the main DM constituent

• Observations of NSs in dwarf spheroidals would constrain PBHs in a broad $10^{20}-10^{24}$ g range

• If some old GCs are of primordial origin that would effectively rule out PBHs in $10^{16}-10^{25}$ g range ($\Omega_{\text{PBH}} \sim 1$), thus completely closing the last remaining possible window.
THANK YOU!
<table>
<thead>
<tr>
<th>M_*/M_\odot</th>
<th>ρ_{PSC}, GeV cm$^{-3}$</th>
<th>M_{bound}, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2×10^1</td>
<td>4.4×10^{19}</td>
</tr>
<tr>
<td>2</td>
<td>5.2×10^1</td>
<td>2.5×10^{20}</td>
</tr>
<tr>
<td>3</td>
<td>9.2×10^1</td>
<td>7.2×10^{20}</td>
</tr>
<tr>
<td>4</td>
<td>1.4×10^2</td>
<td>1.5×10^{21}</td>
</tr>
<tr>
<td>5</td>
<td>1.9×10^2</td>
<td>2.6×10^{21}</td>
</tr>
<tr>
<td>6</td>
<td>2.4×10^2</td>
<td>4.2×10^{21}</td>
</tr>
<tr>
<td>7</td>
<td>3×10^2</td>
<td>6.2×10^{21}</td>
</tr>
<tr>
<td>8</td>
<td>3.6×10^2</td>
<td>8.7×10^{21}</td>
</tr>
<tr>
<td>10</td>
<td>5×10^2</td>
<td>1.6×10^{22}</td>
</tr>
<tr>
<td>12</td>
<td>6.4×10^2</td>
<td>2.4×10^{22}</td>
</tr>
<tr>
<td>15</td>
<td>8.7×10^2</td>
<td>4.3×10^{22}</td>
</tr>
</tbody>
</table>
Supplementary

\[\rho_{\text{dm}} = 4 \cdot 10^2 \text{ GeVcm}^{-3} \]

\[\rho_{\text{dm}} = 2 \cdot 10^3 \text{ GeVcm}^{-3} \]

\[\rho_{\text{dm}} = 10^4 \text{ GeVcm}^{-3} \]