

Composition at the "ankle" measured by the Pierre Auger Observatory: pure or mixed?

Alexey Yushkov¹ for the Pierre Auger Collaboration²

¹University of Siegen, Germany ²Av. San Martín Norte 304, 5613 Malargüe, Argentina http://www.auger.org/archive/authors_2015_06.html

Mass composition around the "ankle" ($\lg(E/\text{eV}) \approx 18.7$)

Mean and variance of $\ln A$ from the first two moments of $X_{\rm max}$ distributions

[The Pierre Auger Collaboration, PRD 90, 122005 (2014)]

Less model-dependent estimate of $\sigma(\ln A)$ near the "ankle"?

The Pierre Auger Observatory

Location:

Mendoza province, Argentina

Fluorescence detector (FD): [longitudinal profile]

24+3 fluorescence telescopes at 4 locations duty cycle $15\,\%$

Surface detector (SD): [lateral distribution]

area of 3000 km 2 1660 water Cherenkov detectors at 1500 m spacing duty cycle $100\,\%$

Data

Hybrid (FD and SD)

- \triangleright 8 years 12/2004 12/2012
- $ightharpoonup \lg(E/\text{eV}) = 18.5 19.0$
- ightharpoonup zenith angles $0^{\circ} 65^{\circ}$
- ► 1376 high-quality events

Basic observables

FD: depth of shower maximum, X_{max} , scaled to 10 EeV

SD: signal at 1000 m from the core, S(1000), scaled to 10 EeV, 38°

The scaled observables are used, they are marked with an asterisk

$$X^*_{
m max}$$
, $S^*(1000)$

The key idea

correlation between $X^st_{
m max}$ and $S^st(1000)$ depends on the purity of the primary beam

Pure compositions \Rightarrow correlation $\gtrsim 0$

The key idea

heavier nuclei produce shallower showers with larger signal (more muons) general characteristics of air showers / minor model dependence

More negative correlation ⇒ more mixed composition

P. Younk, M. Risse, ApP 35 (2012) 807 6/17

Correlation between X^*_{\max} and $S^*(1000)$

Ranking coefficient $r_{\rm G}$ [R. Gideon, R. Hollister, JASA 82 (1987) 656]

- f 1 rank events in $X^*_{
 m max}$ and $S^*(1000)$
- 2 replace measured values by ranks:

$$X_{\text{max}}^*(1), \dots, X_{\text{max}}^*(N) \Longrightarrow 1, 2, \dots, N$$

 $S^*(1000)(1), \dots, S^*(1000)(N) \Longrightarrow 1, 2, \dots, N$

3 count events with ranks deviating from the expectations for perfect (anti-)correlation; all events contribute 0 or $1 \Rightarrow$ robustness against outliers

$r_{ m G}$ is invariant to any transformations leaving ranks unchanged e.g. to systematics in $X^*_{ m max}$ and $S^*(1000)$

Correlation $r_{\rm G}(X_{\rm max}^*,\,S^*(1000))$ in data

correlation is significantly negative

unique plot of hybrid experiment

systematics plays only a minor role $\sigma_{
m syst}(r_{
m G})\lesssim 0.01$ due to invariance of $r_{
m G}$ to additive and multiplicative scale transformations

Data vs pure beams

$$r_{
m G}(X^*_{
m max},\,S^*(1000))$$
 for protons Epos-LHC QGSJetII-04 SibyII 2.1 0.00 $+0.08$ $+0.07$ difference to data $pprox 5\sigma$ $pprox 8\sigma$ $pprox 7.5\sigma$

difference is larger for other pure beams

primary composition is mixed

Dispersion of masses in the primary beam

Correlation is more negative for more mixed compositions

Use $r_{\mathrm{G}}(X_{\mathrm{max}}^*,\,S^*(1000))$ to estimate the dispersion $\sigma(\ln\!A)$ of primary masses

$$\sigma(\ln A) = \sqrt{\langle \ln^2 A \rangle - \langle \ln A \rangle^2}$$

$$\langle \ln A \rangle = \sum_{i} f_i \ln A_i, \quad \langle \ln^2 A \rangle = \sum_{i} f_i \ln^2 A_i$$

 f_i — relative fractions of masses $A_i = 1, \ldots, 56$

 $r_{\rm G}(X_{
m max}^*,\,S^*(1000))$ vs dispersion of masses $\sigma(\ln A)$

data are compatible with dispersion of masses $\sigma(\ln\! A)\gtrsim 1$

data are compatible with dispersion of masses $\sigma(\ln\!A)\gtrsim 1.1$

data are compatible with dispersion of masses $\sigma(\ln\!A)\gtrsim 1.1$

Uncertainties in hadronic models

Can one get $r_G(X_{\max}^*, S^*(1000)) < 0$ for pure protons?

Change proton-air interactions (study with CONEX 3D)

[T. Bergmann et al., ApP 26 (2007) 420, R. Ulrich et al., PRD 83 (2011) 054026]

The modification factor ($f_{19} = 1.5$: increase up to factor 1.5 at 10 EeV)

$$f(E) = 1 + (f_{19} - 1) \frac{\lg(E/1 \text{ PeV})}{\lg(10 \text{ EeV}/1 \text{ PeV})}$$

Modified parameters (for Epos-LHC)

cross-section

elasticity

pion charge ratio

multiplicity

 $r_{\rm G}$ changes by $\lesssim 0.03$

Possible under-production of muons by hadronic models?

[G. Farrar for the Pierre Auger Collaboration (2013) arXiv:1307.5059, A. Aab et al., PRD 91 (2015) 032003]

re-weighting of muons at ground by factor 1.3: $r_{
m G}$ decreases by $\lesssim 0.03$

changes are small compared to difference between data and protons

Summary

lacktriangle significantly negative correlation between X^*_{max} and $S^*(1000)$ is found in data:

$$r_{\rm G}(X_{
m max}^*,~S^*(1000)) = -0.125 \pm 0.024~({
m lg}(E/{
m eV}) = 18.5 - 19.0)$$

• difference to pure beams is $\gtrsim 5\sigma$:

the primary composition around the "ankle" is mixed

▶ dispersion of masses in the primary beam compatible with data:

$$1.0 \lesssim \sigma(\ln A) \lesssim 1.7$$
 (within the interaction models used)

results are robust against experimental uncertainties on $X^*_{\rm max}$ and $S^*(1000)$ results are robust against moderate modifications of hadronic interactions

Uncertainties

Some of the checks for $r_G(X_{\text{max}}^*, S^*(1000))$

- ► different FD telescopes
- ► different time periods
- smaller angular ranges
- smaller energy ranges
- variations in event selection
- ▶ changes of energy, X_{max} , S(1000) scales
- ▶ ad hoc energy and zenith angle dependent biases in $X_{\rm max}$ (up 10 ${\rm g/cm^2}$) and S(1000) (up to 10%)

systematic error on $r_{\rm G}$ estimated to be 0.01

statistical uncertainty $\sigma_{\rm stat}(r_{\rm G})\approx 0.9/\sqrt{N}$ (sample of N events) (obtained using dedicated MC studies)

for data
$$\sigma_{
m stat}(r_{
m G})pprox 0.9/\sqrt{1376}pprox 0.024$$

Comparison to composition from fits of $X_{\rm max}$ distributions

	composition from fits of $X_{ m max}$ distributions [The Pierre Auger Collaboration, PRD 90, 122006 (2014)]		correlation between $X^*_{ m max}$ and $S^*(1000)$
Model	$\sigma(\ln A)$	$r_{\rm G}(X_{\rm max}^*,S^*(1000))$	$r_{ m G} = -0.125 \pm 0.024$
	$(pprox 0.5p - 0.5\mathrm{He})$		
QGSJetII-04	≈ 0.69	$\approx +0.08$	$1.15 \lesssim \sigma(\ln A) \lesssim 1.7$
Sibyll 2.1	≈ 0.69	$\approx +0.08$	$1.15 \lesssim \sigma(\ln A) \lesssim 1.7$
	$(\approx 0.35 p - 0.$	$30 \mathrm{He} - 0.35 \mathrm{O})$	
Epos-LHC	≈ 1.17	≈ -0.08	$1.0 \lesssim \sigma(\ln A) \lesssim 1.6$

Inconsistent results on $r_{\rm G}(X_{\rm max}^*,\,S^*(1000))$ for QGSJetII-04 and Sibyll 2.1; for Epos-LHC results are within 2σ from each other

Composition from fits of $X_{\rm max}$ distributions

QGSJetII-04, Sibyll 2.1: $\approx 0.5\,p - 0.5\,\mathrm{He}$; Epos-LHC: $\approx 0.35\,p - 0.30\,\mathrm{He} - 0.35\,\mathrm{O}$

Event selection

Related to X_{max}

same as in [The Pierre Auger Collaboration, PRD 90, 122005 (2014)]

Pre-selection

- hardware status
- aerosols
- hybrid geometry
- profile reconstruction
- clouds

Quality and fiducial selection

- ightharpoonup P(hybrid)
- ▶ X_{max} observed
- quality cuts
- fiducial field of view
- profile cuts

Related to S(1000)

- ▶ at least 5 working stations around the station with the highest signal
- exclusion of events with stations having saturated signal traces