All-Flavor Searches for Dark Matter with the IceCube Neutrino Observatory

ICECUBE

Introduction

IceCube

- 1 km³ of Antarctic ice
- · 5160 optical sensors
- neutrino detection through Cherenkov light emission from secondary particles
- DeepCore infill array for energies below 100 GeV

WIMP Searches

Neutrino signal from annihilation of Weakly Interacting Massive Particles (WIMPs) trapped in massive celestial bodies

What's new?

- v_{μ} : extended track-like topologies \rightarrow good angular resolution v_e , v_{τ} : cascade-like signatures \rightarrow good energy resolution
- Earth and solar WIMP searches WIMP searches with IceCube so far focused on vu events due to better pointing precision
- reasons for analysis sensitive to all flavors:
- enhancement of measured flux
- better precision in determination of neutrino energy
- backgrounds from atmospheric v_e and v_{τ} are smaller
- better rejection of cosmic ray muons by requiring cascade-like event signature

Challenges at low energies:

- simulation of events and detector response
- particle identification
- directional reconstruction (of cascades in particular)

Low Energy Cascade Reconstruction

- pointing back to the source region requires decent angular resolution
- challenging to achieve good
 - spherical event shape
 - · limited topological and timing information at low energies

- · individual uncertainty estimate on angular reconstruction
- Cramer-Rao based implementation was coded

$$\begin{split} (\text{cov}^{-1})_{lm} &= F_{lm} = - \left\langle \frac{\partial^2 \log L(\vec{\theta})}{\partial \theta_l \partial \theta_m} \right\rangle \\ \frac{\partial \mu_{\text{h}}(\vec{\theta}, i, j)}{\partial \theta_l} \frac{\partial \mu_{\text{h}}(\vec{\theta}, i, j)}{\partial \theta_m} + \sum_{k=1}^{\theta \text{monhitDOMs}} \frac{\partial^2 \mu_{\text{sh}}(\vec{\theta}, k)}{\partial \theta_l \partial \theta_m} \end{split}$$

good correlation with actual resolution taken from MC

Earth WIMP Search

50 GeV/c² WIMPs and π annihilation channel as test case

- independence from precise MC background prediction
- exploitation of features distinguishing between cascade and track
- exploitation of angular distribution of signal and backgrounds
- basic input for Likelihood algorithm: zenith angle(cascade hypothesis) vs zenith angle(track hypothesis)
- resolve signal regions and merge background dominated parts

likelihood-ratio test on simulated data yields:

	annihilation rate [annihilations/s]
Sensitivity (90% C)	7.7·10 ¹³
Evidence (3σ)	1.7·10 ¹⁴
Discovery Potential (5σ)	2.2·10 ¹⁴

Expectations for one year of IceCube data taken with its 86-string configuration

Solar WIMP Search

- work in progress
- consider candidate masses: 50, 100, 250, 500, 1000 GeV/c²
- · Background reduction by a factor of 106
- for a showcase candidate with mass of 100 GeV/ c^2 :
 - signal efficiencies at 5.0% (8.4%) for WW (bb) channel (for this analysis efficiencies are larger for lower energies)
 - multivariate technique helps discriminating background: use 12 variables, incl. direction, energy, vertex, as well as geometrical and veto quantities for good background separation

signal: blue, data: black Atmospheric background contributions also shown for comparison: total (green) = μ (purple) + v_{μ} (red) + v_{e} (yellow)

for limit calculations: plan to use likelihood approach considering energy, direction and directional uncertainty

