H.E.S.S. Galactic plane survey

Christoph Deil, Francois Brun, Svenja Carrigan, Ryan Chaves, Axel Donath, Henning Gast, Vincent Marandon, Regis Terrier for the H.E.S.S. collaboration

> August 4th, 2015 **ICRC 2015**

Christoph Deil, ICRC 2015, "H.E.S.S. Galactic plane survey" — Slide 1

The Astroparticle Physics Conference

34th International Cosmic Ray Conference July 30 - August 6, 2015 The Hague, The Netherlands

> MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

Dataset

H.E.S.S. - HGPS

HGPS dataset

H.E.S.S. I	Telescopes
2004 to 2013	Observations
3000 hours	Total exposure
$250^{\circ} < I < 65^{\circ}$ -3.5° < b < 3.5	Sky region
0.2 – 100 Te\	Energy range
0.07 deg	Resolution (R68)

Survey region and exposure

Energy threshold

Point source sensitivity

Source catalog Construction

Morphology model (2013)

Christoph Deil, ICRC 2015, "H.E.S.S. Galactic plane survey" — Slide 8

ICRC 2013 Figure – Gaussian sources ...

... it's not really that simple ...

Morphology model (2015)

- Cut out SNRs and Galactic centre region (**13** sources)
- Large-scale diffuse Gaussian band model
- **100** significant Gaussian components with Poisson likelihood test statistic TS > 30
- 64 sources (re-)analysed
- HGPS catalog sources: **77** = 64 + 13

Gaussian band large-scale emission model

- Gaussian shape in GLAT
- Parameters vary with GLON:
 - Peak Brightness
 - Peak latitude
 - Gaussian width
- Fitted outside exclusion regions, using sliding window with 20 deg width.

Results

For the first time shown in full detail! Will be released as FITS with the paper. Come see the poster — Session: Poster 3 GA, Track: GA-EX Board #: 54

Christoph Deil, ICRC 2015, "H.E.S.S. Galactic plane survey" — Slide 12

310 308 306 304 302 300 298 296 294 292 290 288 286 284 282 280 278 276 274 272 270 268 266 264 262 260 258 256 254 252 250 Galactic Longitude (deg)

ΤS

ICRC 2013

HESS J1113-391

HESS J1708-410

Preliminary

Christoph Deil, ICRC 2015, "H.E.S.S. Galactic plane survey" — Slide 13

HESS JIIIA-385

HESS J. 113-381

118-385 HESSIN

11031A

Source and sensitivity Galactic latitude distribution

Caveat: these are observed distributions, not taking survey coverage and selection effects into account!

See H.E.S.S. PWN and SNR population studies. PWN – Klepser et al. GA03 ID=635 SNR – Hahn et al. GA17 ID= 556

Associations

Christoph Deil, ICRC 2015, "H.E.S.S. Galactic plane survey" — Slide 15

Systematic association of HGPS sources with nearby PSR, SNR, PWN, GeV sources (3FGL and 1FHL) Not a population study!

Thanks to Samar Safi-Harb and Gilles Ferrand for SNRcat! http://www.physics.umanitoba.ca/snr/SNRcat/

New H.E.S.S. sources!

Summary

- H.E.S.S. Galactic plane survey (HGPS) is completed
- Can be the basis for new studies, e.g. by H.E.S.S. - PWN population study (Stefan Klepser et al.)
 - SNR population study (Joachim Hahn et al.)
- Several new sources discovered
- Paper and legacy data release coming soon (fall 2015)
- FITS maps and source catalog (morphology & spectra)
- Come see the HGPS poster (Axel Donath et al.) and talk to us!

Backup slides

HGPS firm identifications (see pie chart on slide 17)

Source Name	Associated object	Class	Evidence	Reference
HESS J1018-589A	1FGL J1018.6-5856	Binary	Variability	H. E. S. S. Collaboration et al. (2015a)
HESS J1302-638	PSR B1259-63	Binary	Variability	Aharonian et al. (2005a)
HESS J1826–148	LS 5039	Binary	Variability	Aharonian et al. $(2006c)$
HESS J0852-463	Vela Junior	SNR	Morphology	Aharonian et al. (2005b)
HESS $J1442 - 624$	RCW 86	SNR	Morphology	Aharonian et al. (2009)
HESS $J1534-571$	G323.7-01.0	SNR	Morphology	HESS SNR shell paper (2015)
HESS J1713-397	RX J1713.7-3946	SNR	Morphology	Aharonian et al. (2004)
HESS J1731-347	G353.6 - 0.7	SNR	Morphology	H.E.S.S. Collaboration et al. (2011b)
HESS $J1800-240$	W 28	SNR	Position	Aharonian et al. (2008)
HESS J0835-455	Vela X	PWN	Morphology	Aharonian et al. (2006a)
HESS J1303-631	PSR J1301 - 6305	PWN	ED Morph.	H.E.S.S. Collaboration et al. (2012)
HESS $J1514 - 591$	$MSH \ 15-52$	PWN	Morphology	Aharonian et al. $(2005a)$
HESS J1825–137	PSR J1826 - 1334	PWN	ED Morph.	Aharonian et al. $(2006d)$
HESS $J1356-645$	PSR J1357-6429	PWN	Position	H.E.S.S. Collaboration et al. (2011a)
HESS J1418-609	PSR J1418-6058	PWN	Position	Aharonian et al. $(2006b)$
HESS J1420-607	PSR J1420-6048	PWN	Position	Aharonian et al. $(2006b)$
HESS $J1554-550$	G327.1-01.1	PWN	Morphology	Section 5.7.5
HESS $J1747 - 281$	G0.9 + 0.1	PWN	Morphology	Aharonian et al. $(2005b)$
HESS J1818–154	G015.4 + 00.1	PWN	Morphology	H. E. S. S. Collaboration et al. (2014)
HESS J1849-000	PSR J1849-0001	PWN	Position	Section $5.7.15$
HESS J1837-069	PSR J1838 - 0655	PWN?	Morphology	Marandon et al. (2008)
HESS J1640-465	G338.3-0.0	Composite?	Position	Abramowski et al. (2014b), Gotthelf et al. (2014)
HESS J1119-614	PSR J1119-6127	Composite	Position	Section 5.7.1
HESS J1813–178	PSR J1813-1749	Composite	Position	Funk et al. (2007) , Gotthelf & Halpern (2009)
HESS J1833-105	G21.5 - 0.9	Composite	Position	Section 5.7.10
HESS J1846-029	PSR J1846-0258	Composite	Position	Section $5.7.13$
HESS J1930+186	G54.1 + 0.3	Composite	Position	Acciari et al. (2010) , Section 5.5

Exclusion regions and regions of interest

- Position: (I, b) = (17.31, 2.49) deg $(\alpha, \delta) = (273.34, -12.69) \text{ deg}$
- Extension: 0.21 deg
- Flux: 4.2% Crab

- Position: (l, b) = (18.48, -0.39) deg $(\alpha, \delta) = (276.51, -13.02) \text{ deg}$
- Extension: 0.15 deg
- Flux: 3.3% Crab

- Position: (l, b) = (21.49, 0.38) deg $(\alpha, \delta) = (277.25, -9.99) \text{ deg}$
- Extension upper limit: < 0.07 deg
- Flux: 1.7% Crab

Galactic Longitude (deg)

- Position: (l, b) = (23.21, 0.29) deg $(\alpha, \delta) = (278.13, -8.51) \text{ deg}$
- Extension upper limit: < 0.05 deg
- Flux: 0.8% Crab

- Position: (l, b) = (29.41, 0.09) deg $(\alpha, \delta) = (281.17, -3.10) \text{ deg}$
- Extension upper limit: < 0.05 deg
- Flux: 1.0% Crab

