Detection of tau neutrino by Cherenkov telescopes

1) Earth-Skimming method

- Pointing MAGIC down from Roque de Los Muchachos (altitude 2200 a.s.l.) the sea surface is ~165 km away, yielding a large volume in viewed.

2) Monte Carlo simulation chain

1) Neutrino propagation in Earth: ANIS

 We included local topography of detector site

2) Extensive Air shower Simulations: CORSIKA

 T. Pierog and D. Heck CORSIKA website: https://web.lhp.kit.edu/corsika

 Complied with option:
 - TAUFL - tau decay by PYTHIA
 - IACT (Bermiehar package) – cherenkov photon distribution for any defined array geometry
 - CURVED EARTH, CHERENKOV, THIN, QGSJET II, VOLUMEDET, SLANT

3) MC simulations

 - For zenith angle (θ): 87, 84, 80 deg; 10 bins in azimuth
 - Shower are used several times (100 shower shifted 10 times around center of detector) in total 1000 showers for each injection depth (X_n)
 - X_n from detector level to the top of the atmosphere, at least every 50 g/cm²

<table>
<thead>
<tr>
<th>Energy</th>
<th>1</th>
<th>2.15</th>
<th>4.64</th>
<th>10</th>
<th>21.5</th>
<th>46.5</th>
<th>100</th>
<th>215</th>
<th>465</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P(eV)</td>
<td>P(PeV)</td>
<td>P(eV)</td>
<td>P(PeV)</td>
<td>P(eV)</td>
<td>P(PeV)</td>
<td>P(eV)</td>
<td>P(PeV)</td>
<td>P(eV)</td>
</tr>
<tr>
<td>low</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>proton</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>gamma</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

 - for H.E.S.S. like two/four telescopes (IACT-2/IACT-4) and for a few CTAs array considered in K. Bernardini et al, Astropart. Phys. 43 (2013) 177 with so-called Production conditions

4) Example of shower images on camera

 - Clear separation between shower interacting a the top of the atmosphere and deep tau induced shower
 - Signature: looking for inclined bright events with small value of Alpha/Miss parameter
 - Size, Length and Width distribution depend on energy of primary tau lepton (more bright event leads to larger image size).
 - Distance, Miss and Alpha distribution almost the same for 1-1000 PeV
 - The shape of distributions is almost independent of array configuration, due to large size (~> 1km) Cherenkov pool distributions at detector level

5) Trigger efficiency

 - Trigger efficiency: number of simulated showers with a positive trigger decision over the total number of shower generated for fixed energy and zenith angle.

 Trigger conditions:
 L1: 3 pixels on camera above 4 µe; L2: at least 2 neighboring triggered telescopes

6) Identification efficiency

 - Multi-parameter analysis (genetic algorithms)

 \[d = (\text{size, length, distance, miss, alpha}) \]

 \[f = \frac{\sum_{i=1}^{N} |S_i - T_i|}{N} \]

 Maximize cost function: \(f(S_i, T_i) = \frac{|S_i - T_i|}{max} \)

 \(S_i, T_i \) are signals and targets

 SIGNAL: Induced shower with injection vertical depth \(X_n > 600 \text{g/cm}^2 \)

 BACKGROUND: Induced showers with \(X_n < 100 \text{g/cm}^2 \)

 Optimal scenario: 100% signal, 0% background

 Selection criterion:

 - CTA-E (99.7%)

8) Event rate prediction

 - At energy larger than (0.1) PeV detection of earth-skimming tau neutrinos with IACTs becomes promising for (short) transient signals (D.G. and E. Bernardini, A. Kappes, Astropart. Phys. 61 (2015) 12)

 - In recent paper results for ideal detector with 10% trigger efficiency for lepton tau induced showers.

 - This simulation will increase the trigger efficiency and calculated rate at least of about factor 3 to our previous calculation.

 Expected event rate for a detector located at La Palma/VERITAS compared with what expected for IceCube

<table>
<thead>
<tr>
<th>Flux at</th>
<th>Flux at</th>
<th>Flux at</th>
<th>Flux at</th>
<th>Flux at</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 PeV</td>
<td>0.1 PeV</td>
<td>1 PeV</td>
<td>10 PeV</td>
<td>100 PeV</td>
</tr>
<tr>
<td>6.4</td>
<td>4.5</td>
<td>2.6</td>
<td>26</td>
<td>37</td>
</tr>
<tr>
<td>24.6</td>
<td>11.7</td>
<td>4.8</td>
<td>49</td>
<td>20.7</td>
</tr>
<tr>
<td>6.8</td>
<td>2.5</td>
<td>0.6</td>
<td>4.6</td>
<td>8.6</td>
</tr>
<tr>
<td>11.0</td>
<td>3.2</td>
<td>0.7</td>
<td>3.5</td>
<td>7.6</td>
</tr>
</tbody>
</table>

 - For all models studied in this work which predict neutrino fluxes, the event rate can be comparable to IceCube or even better
 - In case of sites surrounded by mountains results shown higher event rate (by at least factor 2).