

STEREO observations of the 7 Nov 2013 SEP event - an event inside a magnetic loop

N. Dresing¹, A. Klassen¹, B. Heber¹, R. Gómez-Herrero², M.A. Hidalgo², M. Temmer³, A. Veronig³

1 IEAP, University of Kiel, Germany 2 Space Research Group, University of Alcalá, Spain 3 Institute of Physics, University of Graz, Austria

34th ICRC - The Hague - The Netherlands July 30 - August 6, 2015

Motivation: SEP events inside magnetic clouds

• Magnetic clouds (MCs) are able to change the Parker magnetic field topology and limb or far west limb: e.g. Richardson et al., 1991, Gómez-Herrero et al., 2006)

therefore provide modified connections to the Sun (e.g. impulsive events from the east

Richardson et al. 1991

Motivation: SEP events inside magnetic clouds

• Magnetic clouds (MCs) are able to change the Parker magnetic field topology and limb or far west limb: e.g. Richardson et al., 1991, Gómez-Herrero et al., 2006)

• SEP events inside MCs lend themselves to probe the magnetic field structure inside the MC (twist of magnetic field lines) e.g. Kahler et al., 2011a,b; Hu et al., 2015

therefore provide modified connections to the Sun (e.g. impulsive events from the east

Richardson et al. 1991

Motivation: SEP events inside magnetic clouds

Structure of this talk:

1) Bi-directional SEP distribution in terms of the SEP injection 2) Twist of magnetic field lines inside the MC

Richardson et al. 1991

Injection of SEPs into a magnetic cloud

• A flare occurs directly below / inside the footpoint of one loop leg $\frac{1}{\sqrt{2}}$

Richardson et al. 1991

Injection of SEPs into a magnetic cloud

• A flare occurs directly below / inside the footpoint of one loop leg $\frac{1}{\sqrt{2}}$ • A coronal shock (larger extent) intersects the loop leg -> Mirroring, bi-directional SEP distribution

Richardson et al. 1991

Injection of SEPs into a magnetic cloud

- A flare occurs directly below / inside the footpoint of one loop leg $\frac{1}{\sqrt{2}}$ • A coronal shock (larger extent) intersects the loop leg
- -> Mirroring, bi-directional SEP distribution
- Can a shock intersect both loop legs and inject particles into both legs? -> bi-directional SEP distribution

To our knowledge it could never be proven that an injection into **both** loop legs occurred

Problem: Similar signatures of mirroring and double injection

Richardson et al. 1991

The event is observed by STA and STB but not close to Earth

The 7 Nov 2013 SEP event

2013-11-07 10:35:30

Flare at 10:15 UT Flare Carr long: 37°

Electron observations at STA and STB

Electron observations at STA and STB

- •Bi-directional distribution in north/ south-direction
- Later arriving beam (south) shows higher intensity!
- -> A double injection scenario is suggested!

SEP Injection: Radio signatures of TWO sources

NRH (ground based) station sees **two spatially** separated radio sources although the associated flare is behind the limb!

10:17:02 07N0V2013 150.9MHz

SEP Injection: Radio signatures of TWO sources

NRH (ground based) station sees **two spatially** separated radio sources although the associated flare is behind the limb!

-> these distinct injections are likely associated to the two separated injections into the two MC loop legs

10:17:02 07NOV2013 150.9MHz

Solar wind plasma and magnetic field observations

Solar wind plasma and magnetic field observations

Solar wind plasma and magnetic field observations

Criteria for a magnetic cloud: Smooth rotation of the magnetic field Comparison Low proton temperature **W** Bi-directional electron heat flux (not shown) **D** Enhanced magnetic field very low plasma beta

Magnetic-cloud like structure

Graduated Cylindrical Shell (GCS) Model

Reconstruction of the 3D morphology of the ICME close to the Sun

Graduated Cylindrical Shell (GCS, Thernisien _____ et al. 2006) model applied to the white light coronagraph observations at STEREO and SOHO

Result: high inclination of -85° (north/south) directed)

-5000 -10000(X (arcsecs)

-3000-2000-1000 0 1000 2000 3000 X (arcsecs) LASCO / C2

Orientation and dimension of the MC

- CME propagates centrally between STA and STB
- CME is tilted towards south by 15°

Orientation and dimension of the MC

- CME propagates centrally between STA and STB
- CME is tilted towards south by 15°
- Total loop length L_{tot}=3.53±0.24 AU

Orientation and dimension of the MC

- •Graduated Cylindrical Shell (GCS, Thernisien et al. 2006) modelling results suggest that the MC is strongly inclined by -85° (north/south directed)
- CME propagates centrally between STA and STB
- CME is tilted towards south by 15°
- Total loop length L_{tot}=3.53±0.24 AU

To probe the amount of **field line twist** inside the MC we determine the path lengths of the SEP electrons propagating through the structure

Lundquist model (Lundquist 1950) suggests strong field line twist.

Kahler et al. 2011a, b find extremely low twist.

STEREO B

STEREO B

155 keV electrons

STEREO B

155 keV electrons

155 keV electrons

155 keV electrons

southern

Total electron path length through the flux rope: L=5.49±0.16 AU

How strong is the magnetic field line twist inside the MC?

	L total / AU	L north / AU	L south /A
155keV electron path length	5.49±0.16	2.34±0.08	3.15±0.08
MC length (GCS model)	3.53±0.24	1.33±0.09	2.20±0.15

The electron path length is around 50% longer than the estimated dimension of the MC -> moderate field line twist inside MC although at the very outer edge of the MC

- SEP event on 7 Nov 2013 observed by both STEREO spacecraft
- STB inside north/south oriented magnetic structure in which the SEPs are injected -> bi-directional distribution
- Relative timing and peak intensities in the NORTH and SOUTH sectors at STB suggest that an injection into both loop legs happened
- NRH radio observations of two separate sources seem to confirm that scenario

• Electron path lengths inside MC in comparison to estimated length of the MC itself (50% longer) reveals a moderate amount of field line twist inside the MC

Summary

