STEREO observations of the 7 Nov 2013 SEP event - an event inside a magnetic loop

N. Dresing1, A. Klassen1, B. Heber1, R. Gómez-Herrero2, M.A. Hidalgo2, M. Temmer3, A. Veronig3

1 IEAP, University of Kiel, Germany
2 Space Research Group, University of Alcalá, Spain
3 Institute of Physics, University of Graz, Austria
Motivation: SEP events inside magnetic clouds

- Magnetic clouds (MCs) are able to change the Parker magnetic field topology and therefore provide modified connections to the Sun (e.g. impulsive events from the east limb or far west limb: e.g. Richardson et al., 1991, Gómez-Herrero et al., 2006)

Richardson et al. 1991
Motivation: SEP events inside magnetic clouds

• Magnetic clouds (MCs) are able to change the Parker magnetic field topology and therefore provide modified connections to the Sun (e.g. impulsive events from the east limb or far west limb: e.g. Richardson et al., 1991, Gómez-Herrero et al., 2006)

• SEP events inside MCs lend themselves to probe the magnetic field structure inside the MC (twist of magnetic field lines)
 e.g. Kahler et al., 2011a,b; Hu et al., 2015
Motivation: SEP events inside magnetic clouds

Structure of this talk:

1) Bi-directional SEP distribution in terms of the SEP injection
2) Twist of magnetic field lines inside the MC

Richardson et al. 1991
Injection of SEPs into a magnetic cloud

- A flare occurs directly below/inside the footpoint of one loop leg
- A coronal shock (larger extent) intersects the loop leg
- Mirroring, bi-directional SEP distribution
- Can a shock intersect both loop legs and inject particles into both legs?

Richardson et al. 1991
Injection of SEPs into a magnetic cloud

- A flare occurs directly below/inside the footpoint of one loop leg
- A coronal shock (larger extent) intersects the loop leg

\[\rightarrow\text{Mirroring, bi-directional SEP distribution}\]

Richardson et al. 1991
Injection of SEPs into a magnetic cloud

• A flare occurs directly below/inside the footpoint of one loop leg
• A coronal shock (larger extent) intersects the loop leg
 -> Mirroring, bi-directional SEP distribution
• Can a shock intersect both loop legs and inject particles into both legs?
 -> bi-directional SEP distribution

To our knowledge it could never be proven that an injection into both loop legs occurred

Problem: Similar signatures of mirroring and double injection

Richardson et al. 1991
The event is observed by STA and STB but not close to Earth

Flare at 10:15 UT
Flare Carr long: 37°
The event is observed by STA and STB but not close to Earth.

Electron observations at STA and STB

- Impulsive, anisotropic event, nothing special
• Bi-directional distribution in north/south-direction
• Later arriving beam (south) shows higher intensity!
• -> A double injection scenario is suggested!

Electron observations at STA and STB

Viewing directions of STEREO/SEPT

- Impulsive, anisotropic event, nothing special
NRH (ground based) station sees **two spatially separated radio sources** although the associated flare is behind the limb!
SEP Injection: Radio signatures of TWO sources

NRH (ground based) station sees **two spatially separated radio sources** although the associated flare is behind the limb!

-> these distinct injections are likely associated to the two separated injections into the two MC loop legs

Richardson et al. 1991
Solar wind plasma and magnetic field observations

*Jian et al. SIR/ CME/shock catalogs
Solar wind plasma and magnetic field observations

| STEREO B |
|---|---|---|
| Ion Intensity | Ion Pitch Angle | Ion Latitudinal Angle |
| 10^3 | 10^4 | 10^5 |
| 1 | 2 | 3 |

Jian et al. SIR/ CME/shock catalogs
Solar wind plasma and magnetic field observations

Criteria for a magnetic cloud:

- ✔ Smooth rotation of the magnetic field
- ✔ Low proton temperature
- ✔ Bi-directional electron heat flux (not shown)
- ☐ Enhanced magnetic field
- ✔ Very low plasma beta

Magnetic-cloud like structure

*Jian et al. SIR/CME/shock catalogs
Graduated Cylindrical Shell (GCS) Model

Reconstruction of the 3D morphology of the ICME close to the Sun

Graduated Cylindrical Shell (GCS, Thernisien et al. 2006) model applied to the white light coronagraph observations at STEREO and SOHO

Result: high inclination of -85° (north/south directed)
Orientation and dimension of the MC

- Graduated Cylindrical Shell (GCS, Thernisien et al. 2006) modelling results suggest that the MC is strongly inclined by -85° (north/south directed)
- CME propagates centrally between STA and STB
- CME is tilted towards south by 15°

View from outside 1AU towards the Sun
Orientation and dimension of the MC

- Graduated Cylindrical Shell (GCS, Thernisien et al. 2006) modelling results suggest that the MC is strongly inclined by -85° (north/south directed)
- CME propagates centrally between STA and STB
- CME is tilted towards south by 15°

- Total loop length $L_{\text{tot}} = 3.53\pm0.24$ AU

$L_{\text{north}} = 1.33\pm0.09$ AU

$L_{\text{south}} = 2.20\pm0.15$ AU

View from outside 1AU towards the Sun
Orientation and dimension of the MC

• Graduated Cylindrical Shell (GCS, Thernisien et al. 2006) modelling results suggest that the MC is strongly inclined by -85° (north/south directed)
• CME propagates centrally between STA and STB
• CME is tilted towards south by 15°

• Total loop length $L_{tot} = 3.53 \pm 0.24$ AU

 $L_{north} = 1.33 \pm 0.09$ AU

 $L_{south} = 2.20 \pm 0.15$ AU

To probe the amount of field line twist inside the MC we determine the path lengths of the SEP electrons propagating through the structure

Lundquist model (Lundquist 1950) suggests strong field line twist.

Kahler et al. 2011a,b find extremely low twist.
Electron propagation path length
Electron propagation path length

155 keV electrons
Electron propagation path length

155 keV electrons

northern injection: 10:15:00

southern injection: 10:16:30
155 keV electrons

northern injection: 10:15:00

northern onset: 10:37

southern injection: 10:16:30

southern onset: 10:49

Electron propagation path length
155 keV electrons

Northern path length:
L = 2.34±0.08 AU

Southern path length:
L = 3.15±0.08 AU

Total electron path length through the flux rope:
L = 5.49±0.16 AU

Injections:
- **Northern:** injection: 10:15:00
- **Southern:** injection: 10:16:30

Onsets:
- **Northern:** onset: 10:37
- **Southern:** onset: 10:49

Instruments:
- STEREO A
- STEREO B
How strong is the magnetic field line twist inside the MC?

<table>
<thead>
<tr>
<th></th>
<th>L total / AU</th>
<th>L north / AU</th>
<th>L south / AU</th>
</tr>
</thead>
<tbody>
<tr>
<td>155keV electron path length</td>
<td>5.49±0.16</td>
<td>2.34±0.08</td>
<td>3.15±0.08</td>
</tr>
<tr>
<td>MC length (GCS model)</td>
<td>3.53±0.24</td>
<td>1.33±0.09</td>
<td>2.20±0.15</td>
</tr>
</tbody>
</table>

The electron path length is around 50% longer than the estimated dimension of the MC -> moderate field line twist inside MC although at the very outer edge of the MC
• SEP event on 7 Nov 2013 observed by both STEREO spacecraft
• STB inside north/south oriented magnetic structure in which the SEPs are injected -> bi-directional distribution
• Relative timing and peak intensities in the NORTH and SOUTH sectors at STB suggest that an injection into both loop legs happened
• NRH radio observations of two separate sources seem to confirm that scenario

- Electron path lengths inside MC in comparison to estimated length of the MC itself (50% longer) reveals a moderate amount of field line twist inside the MC