Indications of anisotropy at large scales in the arrival directions of CRs detected at the Pierre Auger Observatory

Imen Al Samarai¹ for The Pierre Auger Collaboration²

¹CNRS-LPNHE, Paris, France ²The Pierre Auger Observatory Malargue, Argentina

The Astroparticle Physics Conference

34th International Cosmic Ray Conference July 30 - August 6, 2015 The Hague, The Netherlands

Large scale anisotropy studies

- ► Together with the energy spectrum and mass composition → Nature and origin of cosmic rays
- ► Transition from a galactic to an extragalactic origin → significant change in the large scale angular distribution of cosmic rays expected
- Analyses rely on a harmonic expansion of the cosmic rays flux distribution
- Reconstruct the dipole/quadrupole patterns in cosmic rays arrival directions (amplitude and direction)

This contribution

- The phase of the first harmonic from 10 PeV to the highest energies
- **Dipole search** above 4 EeV

The Pierre Auger Observatory

• Designed to study Ultra High Energy Cosmic Rays ($E > 10^{18} \text{ eV}$)

Fluorescence detectors (FD)

27 telescopes at 4 sites overlooking the SD array

Surface detectors (SD)

- ► The 1500 m array :
 - Surface : 3000 km²
 - E > 0.1 EeV (full eff. above 3 EeV)
- ► The 750 m array :
 - Surface : 23.5 km²
 - E > 0.01 EeV (full eff. above 0.3 EeV)

Ability to perform large scale anisotropy studies over 4 orders of magnitude in energy

Analysis methods (1) Systematic effects

- ▶ Low amplitudes expected (% level) \rightarrow careful consideration of spurious modulations
- ► Modulation of any detector property in time → modulations of the measured event rate in right ascension

Varying weather effects

- Atmospheric conditions affect the shower development
- Correction : Energy estimation at reference values of pressure and density, and correction of the energy on an event-by event basis
- Effect of the order of $\sim 1\%$

Varying exposure

- Growth of the detector, detector down times...
- Correction : Using the instantaneous monitoring of the detector size
- Effect of the order of $\sim 0.5\%$

Analysis methods (2) The Rayleigh analysis

- The Rayleigh method to study (first) harmonic modulations [Linsley, 1975] is directly obtained from discrete Fourier analysis
- ► Fourier coefficients :

$$a_n^{\alpha} = \frac{2}{\tilde{N}} \sum_{i=1}^N w_i \cos(n\alpha_i), \ b_n^{\alpha} = \frac{2}{\tilde{N}} \sum_{i=1}^N w_i \sin(n\alpha_i),$$

where w_i accounts for variations in the operating size of the detector, and $\tilde{N} = \sum_{i=1}^{N} w_i$

- Amplitude $r = \sqrt{a^2 + b^2}$ and phase $\phi = \arctan(b/a)$
- Uncertainties $\sigma = \sqrt{\frac{2}{N}}$ and $\sigma_{\phi} = \frac{1}{r} \sqrt{\frac{2}{N}}$
- All measured energies are corrected for atmospheric effects *before* subdividing the event set into energy bins and using the Rayleigh method

Analysis methods (3) The East-West method

- ▶ Difficult to keep under control the trigger effects below 1 EeV down to the 1% level
- The E-W method is insensitive to local effects taking advantage of the symmetry of the setup
- N_E and N_W are related to the amplitude r and phase φ of a first harmonic modulation
- $N_E(\tau) N_W(\tau) \propto r \sin(\tau \phi)$, where τ is the local sidereal time
- 2.5 times less sensitive than the Rayleigh method

Phase of the first harmonic Phase prescription

- A change in phase is potentially indicative of a *real* underlying anisotropy
- ► Hint of a smooth phase transition from ~270° to ~100° in the EeV energy range [P. Abreu et al., 2011]

Test with an independent data set

- Data set posterior to 25 June 2011
- Additional exposure of 21,000 km²
- Likelihood ratio test with p < 0.5% around predefined values :</p>

►
$$\Phi_0^{750 \text{ m}} = 263^\circ \pm 19^\circ$$

► $\phi_0^{1500 \text{ m}}(E) = \phi_0 + \phi_E \arctan\left(\frac{\log_{10}(E/\text{EeV}) - \mu}{\sigma}\right),$
 $\phi_0 = -16^\circ \pm 49^\circ, \quad \phi_E = 76^\circ \pm 64^\circ,$
 $\mu = 0.12 \pm 0.23, \quad \sigma = 0.26 \pm 0.39$

Phase of the first harmonic *Status of the phase prescription*

Analysis details

- ▶ Data set : 25 Jun 2011 \rightarrow 31 Dec 2014
- $\blacktriangleright \ \theta < 60^{\circ}$
- Active detector surrounded by six active neighbors

At (almost) the end of the prescription

- Phase alignment is uncertain (p-values : 40% (750 m array), 7% (1500 m array))
- Additional exposure of 1,900 km² sr yr needed to establish/reject the consistency in phases at 99% CL

8 / 13

Anisotropies in CRs arrival directions

Dipole search above 4 EeV

- Events with $\theta < 60^{\circ}$ (*vertical* events) + events with $60^{\circ} < \theta < 80^{\circ}$ (*inclined* events)
- Extension of the fraction of covered sky from 71% to 85%
- ▶ Increase of 30% in the number of events

The analysis

- ► Data set : 1 January 2004 → 31 December 2013
- ► Absence of trigger effects for events with E ≥ 4 EeV
- Two Rayleigh analysis; RA and azimuth
- Account for atmospheric and geomagnetic effects, and tilt of the array

Dipole search above 4 EeV

E(EeV)	k	r_k^{lpha}	ϕ_k^{lpha}	$P(\geq r_k^{lpha})$
4-8	1	0.0031	15°	0.88
	2	0.0013	99°	0.98
>8	1	0.044	95°	$6.4 \ 10^{-5}$
	2	0.028	36°	0.021

Right ascension distribution

- ► **k=1** : Larger number of events → significance of the measurement has grown to about 4σ
- ▶ k=2: 2% probability to arise by chance→ less significant

Azimuth distribution

A non-vanishing b^Φ₁ → A dipolar component of the flux along the rotation axis of the Earth

E(EeV)	b_1^{Φ}	$P(\geq b_1^{\Phi})$
4-8	-0.0142	0.024
>8	-0.024	0.015

- ► The a₂^Φ coefficient that probes the quadrupolar component is **compatible** with zero
- ► a^Φ₁ and b^Φ₂ coefficients are compatible with zero as expected

Dipole search above 4 EeV

Pure dipole hypothesis

- Equatorial component : $d_{\perp} \simeq r_1^{\alpha} / < \cos(\delta) >$
- Component along the Earth rotation axis: $d_z = b_1^{\Phi}/(\cos(l_{obs}) < \sin(\theta) >)$

E(EeV)	d	δ_d	α_d
4-8	0.027 ± 0.012	$-81^{\circ}\pm17^{\circ}$	$15^{\circ}\pm115^{\circ}$
>8	0.073 ± 0.015	$-39^{\circ}\pm13^{\circ}$	$95^{\circ}\pm13^{\circ}$

Quadrupole components not significant

- Sky maps of the flux of CRs smoothed over 45° for the two energy bins
- Maximum difference in the flux of CRs : [4-8 EeV] : 8%, [>8 EeV] : 21%

Summary

 Results on the phase measurements (left) and upper limits on equatorial amplitudes (right) from 10 PeV to the highest energies

Conclusion

- Different approaches were explored by the Pierre Auger Collaboration in revealing large-scale anisotropies imprinted on the CR arrival directions
- More exposure needed to conclude about the prescribed phase values
- ▶ Phase transition suggestive of a progressive domination by the flux of extragalactic CRs
- ► Upper limits on amplitudes are **at the** % **level** over a wide energy range
- **5.7% equatorial dipole amplitude** above 8 EeV

Thank you for you attention !

I. Al Samarai (LPNHE)