MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

H.E.S.S.

H.E.S.S. precision measurements of the SNR RX J1713.7-3946

Peter Eger

for the H.E.S.S. Collaboration

Energy range: 100 (~30) GeV - 100 TeV

■ Field of view: 5° (3.5°)

Angular resolution: 0.1° - 0.05°

■ Effective area: 5 x 10⁵ m²

First shell-type SNR ever detected in TeV gamma-rays

HESS Collaboration (2006)

gamma-ray spectrum Fermi + HESS

Fermi/LAT collaboration (2011)

3 HESS publications so far — why do we want to revisit this source again?

- Ongoing debate in the literature about the origin of the emission
- Dataset increased by factor of ~2 since last publication (HESS Coll. 2004, 2006, 2007)
- New high-resolution / high-throughput analysis techniques available

Spectral cut-off shape —> electrons vs. protons

- Spatially-resolved spectra w/ unprecedented resolution —> maps of physical quantities
- Morphology & radial profiles, comparison to X-rays —> particle diffusion + escape

The new high-resolution H.E.S.S. map

exposure: 170 h

angular resolution: 0.05°

energy threshold: 250 GeV

Analysis: Model w/ HiRes cuts

(de Naurois & Rolland, 2007)

Full-remnant photon flux spectrum

- exposure: 150 h
- threshold: 200 GeV
- excess: >27000 counts

Full-remnant photon flux spectrum: cutoff behaviour

4			

Spectral Model	Γ	$E_{\rm cut}$ (TeV)	F(> 1 TeV) (10 ⁻¹¹ cm ⁻² s ⁻¹)	χ^2 / ndf
$F_0E^{-\Gamma}$	2.32 ± 0.02	_	1.52 ± 0.02	304.2/118
$F_0 E^{-\Gamma} \exp\left(-\frac{E}{E_{cut}}\right)$	2.06 ± 0.02	12.9 ± 1.1	1.64 ± 0.02	120/117
$F_0 E^{-\Gamma} \exp\left(-\frac{E}{E_{cut}}\right)^2$ $F_0 E^{-\Gamma} \exp\left(-\frac{E}{E_{cut}}\right)^2$	2.17 ± 0.02	16.5 ± 1.1	1.63 ± 0.02	113.8/117
$F_0 E^{-\Gamma} \exp\left(-\frac{E}{E_{cut}}\right)^{0.5}$	1.82 ± 0.04	2.7 ± 0.4	1.63 ± 0.02	142.1/117

Full-remnant photon flux spectrum: cutoff behaviour

Spectral Model	Γ	$E_{\rm cut}$ (TeV)	F(> 1 TeV) (10 ⁻¹¹ cm ⁻² s ⁻¹)	χ^2 / ndf
$F_0E^{-\Gamma}$	2.32 ± 0.02	_	1.52 ± 0.02	304.2/118
$F_0 E^{-\Gamma} \exp\left(-\frac{E}{E_{cut}}\right)$	2.06 ± 0.02	12.9±1.1	1.64 ± 0.02	120/117
$F_0 E^{-\Gamma} \exp\left(-\frac{E}{E_{cut}}\right)^2$	2.17 ± 0.02	16.5±1.1	1.63 ± 0.02	113.8/117
$F_0 E^{-\Gamma} \exp\left(-\frac{E}{E_{cut}}\right)^{0.5}$	1.82 ± 0.04	2.7 ± 0.4	1.63 ± 0.02	142.1/117

Modelling the spectral energy distribution

spectral fits performed with *naima*, see poster by *V. Zabalza*

- Break in electron spectrum @2.5 TeV
- Synchrotron cooling?
 - required B-field: ~140 μG
 - at odds with X-ray measurement
 B = 14.8 ± 0.2 μG
- Additional target photon field?
 - required energy density: 140 eV cm⁻³
 - 10² times larger than in all previous estimates

- Break in proton spectrum @0.8 TeV
- potential explanation through energydependent diffusion into dense molecular clumps?
- Detailed studies of the ISM and photon fields:

- Break in proton spectrum @0.8 TeV
- potential explanation through energydependent diffusion into dense molecular clumps?
- Detailed studies of the ISM and photon fields:

Porter+ (2006), Inoue+ (2012), Fukui+ (2012), Sano+ (2013,2015) Maxted+ (2013)

Spectral hardening at lower energies

Gabici & Aharonian (2014)

Mapping the magnetic field

Mapping the magnetic field

X-rays: XMM-Newton H.E.S.S.-PSF-convolved

TeV: H.E.S.S.

Mapping the magnetic field

X-rays: XMM-Newton H.E.S.S.-PSF-convolved

TeV: H.E.S.S.

Radial profiles: X-ray vs TeV

Radial profiles: X-ray vs TeV

Radial profiles: X-ray vs TeV

Summary

- Break in electron and proton spectrum required to describe the data
 - —> challenges for leptonic scenario
 - —> energy-dependent diffusion into dense molecular clumps in hadronic scenario?
- Large fluctuation of the magnetic field throughout the remnant
- TeV shell extended beyond X-ray shell
 - —> detection of particle escape? (protons)
 - —> B-field evolution? (electrons)

