TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) is a new hybrid detector system for ground-based gamma-ray astronomy at energies from few TeV to several PeV, and for cosmic-ray studies from 100 TeV to several 100 PeV. TAIGA is located in the Tunka valley (Siberia, Russia), where since 2009 the Tunka-133 Cherenkov EAS detector is in operation. The concept of the TAIGA Observatory foresees the creation of a complex of detectors able to provide the hybrid detection of EAS and to effectively separate gamma-induced EAS from hadron-induced ones. Tunka-133, a wide-angle (~2 sr) air Cherenkov detector with 185 stations spread over an area of ~3 km2, is a component of the HiSCORE (Hundred Square-km Cosmic Origin Explorer), an array of wide-angle (FOV = 0.6–0.85 sr) air Cherenkov stations.

Tunka-IACT: a net of IACT with ~4 m mirrors; Tunka-Grande: an array of particle detectors, both on the surface and underground (~2000 m2).

The key advantages of the gamma-observatory TAIGA are the joint operation of wide-angle and narrow-detectors of TAIGA-HISCORE and TAIGA-IACT, and of operating the telescopes in mono-atomic mode with distances of the order of 600 m between the telescopes, the total area covered per telescope is larger than the area that could be covered using the same number of telescopes as a stereoscopic system (requiring distances of roughly 300 m in the 10–100 TeV energy regime).

Conclusion

We have developed a registration system of the IACT camera of the TAIGA Gamma Ray Observatory. It is based on 547 photomultipliers XP1911, combined in clusters of 28 PMTs. The PMT signals are processed by an electronic board on the basis of the 64-channel ASIC MAROC3. The signals from each PMT are processed by two independent channels of the ASIC, corresponding to different gains of the preamplifiers. This ensures that the linear range of the PMT signals is at least 1000. At present, the construction of a prototype camera for the first IACT is underway.