中国炓学院变能物证研完所 Institute of Figh Energy Physics Chinese Academy of Sciences

Northern sky Galactic Cosmic Ray anisotropy between 10－1000 TeV with the Tibet Air Shower Array

Zhaoyang Feng
Institute of High Energy Physics，CAS，China

On behalf of the Tibet ASy Collaboration

ID0880，ICRC2015，the Haag

Large Scale Anisotropy and previous Results

Tibet AS Array

400 TeV anisotropy observations in the southern sky

IceCube: new anisotropy structure

ApJ, 746, 33,2012

IceTop: consist with IceCube results, persists to PeV energies

Zhaoyang Feng et al., Proceeding of the $33^{\text {th }}$ ICRC, Rio de janeiro, 2013, ID0256

Large Scale Anisotropy at 300 TeV

Smooth radius: 29°
Using data with $\theta<45^{\circ}$

- The anisotropy structure can't be described in terms of expected Galactic CG effect neither in amplitude nor in phase.

Tibet ASv Experiment

Tibet China $\left(90.522^{\circ} \mathrm{E}, 30.102^{\circ} \mathrm{N}\right) 4300 \mathrm{~m}$ a.s.l., since 1989

Number of Scinti. Det.
Angular Resolution for gamma rays Energy Resolution for gamma
F.O.V.

Effective Area for AS ~37,000 m²

$0.5 \mathrm{~m}^{2} \mathrm{x} 789$

~0.2deg. @ $100 \mathrm{TeV}(\gamma-$ ray $)$ $\sim 40 \%$ @ $100 \mathrm{TeV}(\gamma$-ray $)$

Data sample and new energy estimation

Detector: Tibetll detector configuration
Operation Time: 1995.10-2010.2

Cut to select events:

1)The core inside the array.
2)Zenith angle <60

Energy Band	15 TeV	50 TeV	100 TeV	300 TeV	1 PeV
\# of events	2.33 e 10	3.97 e 9	1.96 e 9	2.71 e 8	5.72 e 7

Result I: 300 TeV anisotropy

- Using data with zenith angle up to 60°, a larger data sample and FOV is obtained, comparing to ICRC2013 result.
- Expected anisotropy at solar time, anti-sidereal time and ext-sidereal time are observed.
- New 300 TeV band $=300 \mathrm{TeV}+1 \mathrm{PeV}$, the event number is $3: 28 * 10^{8}$.

Statistic significance skymap
Smooth radius: 30°

$$
R(\alpha)=1+A_{1} \cos \left(\alpha-\phi_{1}\right) \quad \text { Described by the first harmonic function well. }
$$

Global picture of ~300 TeV anisotropy

Statistic significance skymap

IceCube in Southern
sky at 400TeV
Tibet AS array in
Northern sky at 300TeV
-9
(b)

Global picture of ~300 TeV anisotropy

Statistic significance skymap

Tibet AS array in
Northern sky at 300TeV

Result II: Transition of CR sidereal anisotropy between 10-1000 TeV

Statistic error only, Systematic error under study

Result III: Amplitude and phase of the first harmonic fitting as a function of the energy

Summary

With data taken by the Tibet Air Shower Array between 1995.10 and 2010.2

- The two-dimensional intensity map with declination from 30 degree to 90 degree at 300 TeV is well connected with IceCube's observation at 400 TeV in 2012.
- Transition of the large anisotropy between $10-1000 \mathrm{TeV}$ is observed.
- A new structure on the energy dependence of the first harmonic amplitude and phase of the large scale anisotropy is revealed above 100 TeV .

Backup slides

Expected anisotropies at 300 TeV

Celestial Cosmic Ray intensity map for 300 TeV
(Science 314(2006)439-443)

b)

The statistic error 0.026\%, $>5 \sigma$ rule out the ComptonGetting effect.

Celestial Cosmic Ray intensity map for 300 TeV
(Science 314(2006)439-443)

> a)

Expected

The statistic error 0. 024\%, $>5 \sigma$ rule out the ComptonGetting effect.

Zhaoyang Feng et al., Proceeding of the 31 ${ }^{\text {st }}$ ICRC, Lodz 2009, ID 0869 PROCEEDINGS OF THE $31^{\text {st }}$ ICRC, ŁÓDŹ 2009

All Sky Search for Emission of Gamma Ray above 100 TeV Using Tibet Air Shower Array
Zhaoyang Feng*, Yi Zhang*, C. Liu*, C. Fan ${ }^{\dagger *}$, H. C. Li ${ }^{\ddagger}$, B. Wang*,H. R. Wu*, H. B. Hu*, H. Lu*, Y. H. Tan*
(On Behalf of The Tibet AS γ Collaboration)

Smoothing radius: 10°

Gamma-like sample

Cosmic ray-like sample

We said:
"Instead, an excess parallel to the Galactic plane is seen. More study is needed to further understand these excesses."

