The first construction phase of the Baikal-GVD neutrino telescope Bair Shaybonov on behalf of the Baikal collaboration

Baikal Site

- Depth of 1366 m at only 3.6 km from shore
- High deep water transparency (22 m) and low light scattering (30-50 m)
- Fresh water
 - simple mechanical solutions,
 - no background from K⁴⁰)
 - no bioluminescence,
 - chemiluminescence (1 photon background)
- The most northern location allows observing the Galactic Center 18 hours per day through the Earth
- Good infrastructure (railroad, power line)
- Reliable ice cover as a deployment platform
 - Simple deployment techniques

Bed cable laying

Detector deployment

Optical Module

- Optical module (see poster #1163):
 - 10" PMT R7081HQE, Q_{eff} ≈ 0.35
 - 17" Glass pressure-resistant sphere VITROVEX
 - Underwater 5-pin industrial SubConn connector
 - OM electronics: amplifier, HV DC-DC, controller
 - 2 on-board LED flashers for calibration: 10⁸ p.e.,
 430 nm, 5 ns
 - Mu-metal cage
 - Elastic gel

Baikal Gigaton Volume Detector

- R&D is almost completed
- Two possible configurations (optimized for both muons and cascades):
 - 12 autonomous telescopes (clusters) at 300 m from each other with 350 m height (depths 950 1300 m)
 - 8 autonomous telescopes with a 525 m height (depths 775 – 1300 m)
 - One shore cable for 2 clusters
 - 2304 OMs in total
 - The first cluster is completed in April 2015

Top view

The first cluster is completed in April 2015

- 192 OMs at 8 strings
 - 24 OMs per string with 15 m spacing
 - depth 950 1300 m
 - 40 m between strings (60 m projected)
- Cluster DAQ center (30 m below surface)
 - Trigger, power, data transfer systems of the cluster
- Electro-optical cable to shore
- Acoustic positioning system (4 beacons on each string)
- Calibration light beacon (LEDs)
 - Interstring time calibration

Cluster design

- 12 OMs are connected to a Central Module forming a section
- String can have 2 or 3 such sections, as well as, an additional equipment such as acoustic modules
- Central Module provides:
 - PMT data digitization (FADC board, 12 channels, 200 MHz, FPGA Xilinx Spartan 6)
 - Control and power supply of OMs
 - Online data processing (e.g. extraction of PMT pulses)
 - Section trigger logic
 - triggering of neighbor pair of OMs with low (0.5 p.e.) and high (3.0 p.e.) thresholds (main condition)
 - section request to Cluster DAQ Center (1.2 km line)
 - after receiving a global trigger, 5 μs waveform data are extracted from FADC and are sent to the shore

A block diagram of the Cluster DAQ center

A block diagram of the section

upper

Cluster operation

- Typical PMT noise rates are 15-30 kHz
- Typical trigger rate is 500 Hz
- Time and amplitude calibration (see poster #1162)
- Laser beacon which locates ~100 m apart from the cluster:
 - Position reconstruction accuracy
 ~3 m
 - Intensity reconstruction accuracy ~10%

Laser based light-source

Cluster Performance for cascade detection

A reconstruction of a cascade vertex:

- Iterative procedure: OMs with residual δt
 > 15 ns are excluded and final N_{hit} is obtained for the following analysis.
- $\delta r = |r_{rec} r_{gen}| \sim 2 \text{ m (median value)}$

Directional resolution for cascades:

~3°- 4° (median)

Energy resolution for cascades:

• $\delta E/E \sim 30\%$, averaged by $E^{-2} v_e$ spectrum

Cluster Performance for cascade detection

~1 Event per year E>100 TeV for $E^2F_{IC} = 3.6 \ 10^{-8} \ GeV^{-1} \ cm^{-2} \ sr^{-1}$

External water volume is used
Neutrino effective area for 100 TeV: ≈0.1 m²

Atmospheric muons MC-sample (341 days)

Vertex reconstruction filter:

 $-270 < z_{rec} < 200 \text{ m}$, (OMs location: -172.5 \div +172.5 m)

Expected number of events for 1 year exposition: ~1 event from astrophysical IC flux 0.05 events – atm. ν; 0.05 events – atm. μ

Hit channel multiplicity distributions

Baikal-GVD Performance

Effective volume for cascades E>100 TeV: ~0.2 - 0.6 km³

Effective area for muons E>10 TeV: 0.2 - 0.6 km²

Baikal-GVD timeline

Cumulative number of clusters vs. year

Year		2015	2016	2017	2018	2019	2020
Cluster	192 OM	1 192	1 192	<i>3 576</i>	<i>960</i>	7 1344	10 1920
Cluster	288 OM	2/3 192	1 288	<i>2</i> 576	4 1152	6 1728	<i>2304</i>

Conclusion

- Baikal Collaboration has more than 30 year long an extensive positive experience on development, construction and operation of underwater facilities in lake Baikal
- The key elements and systems of the Baikal-GVD have been developed, produced and tested in Lake Baikal. Prototyping & Early Construction Phase of the project concluded with a construction of the first Cluster in April 2015. A cluster is sensitive to about 1 cascade event with E > 100 TeV of IC flux.
- Completion of the Baikal-GVD with 2304 OMs with about of 0.4 km³ effective volume for cascade detection is expected in 2020