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Abstract
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is located at an altitude of 4100 meters in Sierra Negra, Puebla, Mexico. HAWC is an air shower array of 300 water Cherenkov detectors (WCD’s), each with 4 photomultiplier

tubes (PMTs). Because the observatory is sensitive to air showers produced by cosmic rays and gamma rays, one of the main tasks in the analysis of gamma-ray sources is gamma/hadron separation for the suppression of the cosmic-ray background.
Currently, HAWC uses a method called compactness for the separation. This method divides the data into 10 bins that depend on the number of PMTs in each event, and each bin has its own value cut. In this work we present a new method which
depends continuously on the number of PMTs in the event instead of binning, and therefore uses a single cut for gamma/hadron separation. The method uses a Feedforward Multilayer Perceptron net (MLP) fed with five characteristics of the air
shower to create a single output value. We used simulated cosmic-ray and gamma-ray events to find the optimal cut and then applied the technique to data from the Crab Nebula. This new method is tuned on MC and predicts better gamma/hadron
separation than the existing one. Preliminary tests on the Crab data are consistent with such an improvement, but in future work need to be compared with the full implementation of compactness with selection criteria tuned for each of the data bins.

Introduction

The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is composed of 300 water
Cherenkov detector (WCD). On the bottom of each WCD there are 4 photomultiplier tubes (PMTs)
that detect the Cherenkov light. This light is produced by secondary particles in air shower generated
by the interaction between atmosphere and primary particle (as for example gammas rays, protons,
among other particles). The rate of cosmic rays (CR) is bigger than the gamma rays (GR) so it is
critical to find a technique to remove the CR without losing the signals of GR.

Currently, HAWC has a method called compactness for distinguishing those primary particles. For
doing this, the data is divided into 10 bins (see Table 1) depending on nHit, that is the number of
PMTs that have a signal in the event. The compactness depends upon the charge distribution de-
posited by the secondary particles of the shower on PMTs of the array. In this work, a new method
is presented, using a Neural Network (NN) for the gamma/hadron separation without dividing the
data into bins. Five characteristics are computed for feeding a NN that computes a value (θNN ) to
distinguish between CR and GR. Another method in development can be found in [1].
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Figure 1: Architecture of NN with 5 neurons as inputs, two
hidden layers with 5 neurons and one neuron as output. The
width of each connection line between neurons is proportional
to the weight of the NN.

The NN used in this work is a Feed-
forward Multilayer Perceptron [2] with
an architecture of 5-5-5-1 (see Fig-
ure 1). A target value is defined as 1
for gamma ray event and 0 for hadron
event.
We used proton as hadron. The con-
ditions for selecting training events for
each set are:

• The difference between the core re-
construction and simulation does ex-
ceed 5 m.

• The core falls inside the HAWC ar-
ray.

• The event with nHit between 30 and
1200.

The characteristic inputs are:

• P1 = nHit is the number of PMTs with at least one photoelectron (PE).

• P2 = DisMax that is the largest distance between any of the pair of tubes passing the next selec-
tion: first all the PMTs in the event are sorted by their PEs detected and we summed this value for
each PMT from higher to lower until the sum is less that (SumPE −MaxPE) ∗ k(nHit), where
MaxPE is the number of PEs in any PMT in the event, and ”k” is a factor that depends linearly of
nHit, the PMTs involved in that sum are the selected ones.

• P3 = Log10(
nHit∑

n PEi∗RPEi

) where RPEi
> 30 m.

• P4 = CxPE30/MaxPE where CxPE30 is the maximum charge outside a exclusion radius
of 30 m in the event.

• P5 = Log10(|CxPE30 ∗RCxPE30
− PEmaxint ∗RPEmaxint

|) where RCxPE30
> 30 m, and

RPEmaxint
< 30 m

The specifications for training are:

• Stochastic minimization as
learning method.

• 500 epoch.

The result of the NN is shown in
Figure 2. One threshold is defined

for distinguishing between primary
particles, this is θNN .
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Figure 2: The histogram of NN’s outputs for gammas and hadrons in the
learning stage. The majority of gamma events have an output close to
one, and protons are close to 0
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Figure 3: The Q Factor of NN’s outputs. The largest Q fac-
tor is at 4.76 when the output threshold is around 0.98.

To find the θNN , we used the Q factor.

Q factor= εgamma√
εhadron

Where
εgamma gamma efficiency
εhadron hadron efficiency
The Q value estimates the factor by which the
significance will be increased by the classifi-
cation.
In the figure 3 shows the highest values are
close to 0.98. After some analysis we found
that optimal cut is 0.96.

Testing stage

Simulation

Bin nHit range θc

-1 30 - 54 -
0 55 - 87 4.6
1 88 - 138 6.3
2 139 - 216 9.8
3 217 - 323 12.7
4 324 - 457 17.6
5 458 - 606 19.5
6 607 - 754 18.5
7 755 - 889 17.1
8 890 - 1000 15.0
9 1001 - 1200 12.4

Table 1: nHit range and
gamma/hadron cut in each bin
for HAWC-300, θc is the com-
pactness cut value.

For comparing the two methods we use the bin called ”total” is com-
puted using all events from bin 0 to bin 9. The results are shown in
Figure 4 where we can see that for the Q Factor the NN has a better
result than using the compactness method.
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Figure 4: The Q factor is calculated for each bin and the total (bin 0 to 9) with
θNN = 0.96. This shows that for the Q factor in some bins, the NN is better than
compactness but for others does not.

Parameter NN compactness Increase (%)

Q Factor 4.663 3.432 35.889
gamma efficiency 0.606 0.536 13.129
hadron efficiency 0.017 0.024 -30.693

Table 2: Difference between methods with simulation.

Data

θc NKG Gauss

10.0 3.4706 4.4649
12.0 4.3142 4.4703
14.0 5.2777 4.6895
16.0 3.9327 4.3406
18.0 4.3170 4.3613

Table 3: Significance using the compactness variable with a single
cut value for all bins.

θNN NKG Gauss

0.92 5.8842 4.9889
0.94 5.7042 5.4144
0.96 5.9217 5.5096
0.98 3.7534 4.6703
1.00 4.0977 3.1792

Table 4: Significance using NN Vs NN thresh-
old.

Method NKG Gauss

compactness 5.2777 4.6895
NN 5.9217 5.5096
Increase (%) 12.202 17.488

Table 5: Difference between methods with data.

Conclusions
In this work, we propose a new method for gamma/hadron separation that used a Multilayer Per-
ceptron fed with 5 characteristics. The NN’s output is continuous and has a value targeting 1 for
gamma events and 0 for hadron events. In the analysis, we found an optimal cut value for the NN
output θNN = 0.96. With this value the NN has better performance than compactness. The Q Factor
increases approximately 36%, because the gamma efficiency increased about 13% and a decrease of
30% in hadron efficiency. In the case of data we also obtained a better significance using NN instead
of a simplified version of compactness where the compactness cut was constrained to be the same for
all nHit bins. In future work we will compare with the full compactness implementation.
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