Hunting for dark matter subhalos among the Fermi-LAT sources with VERITAS

Daniel Nieto1 for the VERITAS Collaboration2

1Department of Physics, Columbia University, 538 W. 120th St., New York, NY 10027, USA

http://veritas.sao.arizona.edu

nenieto@nevis.columbia.edu

Abstract

The distribution of dark matter (DM) in the Galaxy, according to state-of-the-art simulations, shows not only a smooth halo component but also a rich substructure where a hierarchy of DM subhalos of different masses is found. We present a search for potential DM subhalos in our Galaxy exploiting the high (HE, 100 MeV – 100 GeV) and very-high-energy (VHE, >100 GeV) gamma-ray bands. We assume a scenario where the DM is composed of weakly interacting massive particles of mass over 100 GeV, and is capable of self-annihilation into standard model products. Under such a hypothesis, most of the photons created by the annihilation of DM particles are predicted to lay in the HE gamma-ray band, where the Fermi-Large Area Telescope (LAT) is the most sensitive instrument to date. However, the distinctive spectral cut-off located at the DM particle mass is expected in the VHE gamma-ray band, thus making imaging atmospheric Cherenkov telescopes like VERITAS the best suited instruments for follow-up observations and the characterization of a potential DM signature. We report on the ongoing VERITAS program to hunt for these DM subhalos, particularly focusing on two promising DM subhalo candidates selected among the Fermi-LAT Second Source Catalog unassociated high-energy gamma-ray sources.

INTRODUCTION

Simulations of the DM distribution in Milky Way-like galaxies indicate that it exhibits a wealth of substructure besides the main halo. In the cold dark matter scenario, WIMPs with masses in the GeV-TeV range may self-annihilate and originate γ-rays. DM annihilation in subhalos could be the behind the emission of some unassociated Fermi-LAT objects. We selected DM subhalo candidates from the Fermi-LAT Second Source Catalog (2FGL) aiming to detect the DM spectral cutoff via VERITAS observations.

SELECTION OF CANDIDATES

- Unassociated Fermi-LAT source
- High Galactic latitude: $|b| > 10°$
- No significantly time variable flux
- No counterparts in dedicated search
- Observable from VERITAS with $z < 40°$
- Estimated VERITAS detection time < 50 h

Best DM subhalo candidates: 2FGL J0545.6+6018 & 2FGL J1115.0-0701.

VERITAS

The Very Energetic Radiation Imaging Telescope Array System is located at the Fred Lawrence Whipple Observatory in southern Arizona (31° 40′ N, 110° 37′ W, 1.3 km a.s.l.). It consists of four 12 m diameter imaging atmospheric Cherenkov telescopes. It operates primarily in an all-sky survey mode, covering the entire sky approximately every three hours.

- Energy range: 85 GeV to >30 TeV
- Energy resolution: 15-25%
- Sensitivity: 1% C.U. in 4 h
- Angular resolution: θ_{min} = 0.1° at 10 GeV

FERMI-LAT

The Large Area Telescope is a space-based electron-positron pair-conversion instrument on board NASA’s Fermi -Large Area Telescope (LAT). It operates primarily in its regular observation mode, covering the entire sky approximately every three hours.

- Energy range: 20 MeV to >300 GeV
- Energy resolution: 5-25%
- Field of View: 2.4 sr
- Angular resolution: θ_{min} = 0.3° at 10 GeV

2FGL J0545.6+6018

- VERITAS observations:
 - No significant VHE detection in 8.5 h (see Fig. 1 and Tab. 1).
 - VHE flux upper limits obtained (see Tab. 2).
- Fermi-LAT 7-years analysis:
 - Spectral description compatible with 3FGL but not with 2FGL (see Tab. 3).
 - No variability detected.
 - Spectral energy distribution fitted to different annihilation models:
 - Single channels considered (100% branching ratio).
 - Best fit results for annihilation into W-bosons (see Fig. 3 and Tab. 4).

2FGL J1115.0-0701

- VERITAS observations:
 - No significant VHE detection in 13.8 h (see Fig. 1 and Tab. 1).
 - VHE flux upper limits obtained (see Tab. 2).
- Fermi-LAT 7-years analysis:
 - Spectral description compatible with 2FGL & 3FGL (see Tab. 3).
 - Source is variable, contrary to 2FGL 140° C.U. single flare detected.
 - Source may be a blazar: we encourage HE monitoring to trigger VHE observations during flaring episodes.

References

1. [Reference 1]
2. [Reference 2]
3. [Reference 3]

Acknowledgments: This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, and by SCN in Canada. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. The VERITAS Collaboration is grateful to Trevor Wood for his seminal contributions and leadership in the field of gamma-ray astrophysics, which made this study possible. D.N. acknowledges support from NASA’s Fermi Guest Investigator program.