
Axel Donath, Christoph Deil, Johannes
King, Ellis Owen, Régis Terrier, Ignasi

Reichardt, Manuel Paz Arribas, Jon
Harris, Rolf Bühler, Stefan Klepser

�⇡ A Python package for
gamma-ray astronomy

https://github.com/gammapy/gammapy

Gammapy is an open source gamma-ray astronomy Python package.
It is an in-development affiliated package of Astropy that builds on
the core scientific Python stack to provide tools to simulate and
analyse the gamma-ray sky for telescopes such as CTA, H.E.S.S., and
Fermi.
Gammapy is a place for Python-coding gamma-ray astronomers to
share their code and collaborate.  
Feature requests or contributions welcome!

Gammapy is open source software (BSD-3 licensed like Astropy) hat
uses the very nice software development setup that most open-source
projects have adopted nowadays.  
We use Github for development (git repository, issue tracker, pull
requests and code review). Users can get help on the mailing list. Tests
are run with pytest and docs are generated with Sphinx. We use travis-
ci for continuous integration and readthedocs for docs hosting.

Gammapy builds on the scientific Python stack (Numpy, Scipy, scikit-
image, matplotlib), the core Astropy package and a few Astropy-
affiliated packages (reproject, photutils, wcsaxes). For flexible and
robust morphology and spectrum modeling and fitting we use Sherpa,
for non-thermal (synchrotron, bremsstrahlung, inverse Compton, pion
decay) SED modeling we use Naima.
By using these powerful packages we only have to implement gamma-
ray astronomy-specific methods. And at the same time we are part of
and collaborate with a larger community, e.g. some code that was
initially implemented in Gammapy, but wasn’t really gamma-ray
specfic, has been moved to the other packages in the meantime, where
they can benefit a larger user base.

Gammapy simulation example: synthetic Galactic source population.

What is Gammapy?

The Stack

Gammapy 0.3 (released July 2015) is still alpha quality software!
Gammapy started as a set of Python scripts to do our research
(analysis of Galactic sources with H.E.S.S. and Fermi-LAT data).
Since then the Astropy project was born and recently Sherpa became
an open project. There’s a movement in science towards open,
reproducible research.
We would like Gammapy to grow into a package where standard
gamma-ray analyses are available and prototyping of new methods
happens. Your contributions are welcome! If you don't know how to
turn your scripts into production-quality, re-usable functions and
classes, just talk to us and we'll help you get there.
We are planning a coding sprint / workshop at MPIK Heidelberg in
fall 2015, and a Gammapy 1.0 release and paper towards the end of
2015. But that’s just the next step, hopefully development and use
will continue for many years …

Development

Status, origin, goal and plan

ICRC 2015

Data model and application examples

Please read the Gammapy ICRC 2015 proceeding or go to https://
gammapy.readthedocs.org/ for an explanation of the data model we
use as well as application and code examples.

The toolbox

Gammapy : An open-source Python package for g-ray astronomy Axel Donath

Figure 1: The Gammapy stack. Required dependencies (Numpy and Astropy) are illustrated with solid
arrows, optional dependencies (the rest) with dashed arrows.

2.1 The Gammapy stack

Gammalib has a zero dependency approach to keep the maintenance effort low. This comes
for the price of a higher development effort, because e.g. very basic numerical routines have
to be implemented from the scratch. For Gammapy we adopted a different approach and allow
dependencies, where it makes sense. Tools like pip or conda simplified the distribution of Python
packages.

• Astropy [7] core: General infrastructure using Quantity, Table, WCS, NDData, modeling
• Numpy: Numerical
• Scipy: Advanced numerical algorithms like numerical integration, etc.
• Cython: For speed and performance critical algorithms Addtitonally:
• Scikit-Image: For image processing routines
• Sherpa: Morphology and spectral fitting

2.2 Sub-packages

The Gammapy code base is structured into several sub-packages, where each of the these
packages bundles corresponding functionality in an own namespace. This follows the concept of
other Python packages such as Astropy and Scipy. The following list gives a rough overview over
the different sub-packages with short description :

• gammapy.astro: Galactic population and emission models of TeV sources.
• gammapy.background: Background estimation and modeling
• gammapy.catalog: g-ray source catalog access and processing

3

Gammapy : An open-source Python package for g-ray astronomy Axel Donath

• gammapy.datasets: Easy access to bundled and remote datasets
• gammapy.detect: Source detection tools and algorithms.
• gammapy.hspec: Interface to spectral fitting with Sherpa.
• gammapy.image: Image processing and analysis tools
• gammapy.irf: Instrument response function (IRF) access and handling
• gammapy.morphology: Morphology models and tools
• gammapy.obs: Observation bookkeeping
• gammapy.spectrum: Spectrum models and tools
• gammapy.stats: Statistics functions
• gammapy.time: Handling of time series and g-ray lightcurves.
• gammapy.utils: Utility functions and classes (in sub-modules)

There are some cases (e.g. gammapy.spectrum.models and several sub-modules of gammapy.utils)
where the end-user functionality is exposed in one level further down in the hierarchy, because
putting everything into the top-level gammapy.spectrum or gammapy.utils namespace would make
it hard to find things. Currently about 50% of the Gammapy functionality is implemented as Python
classes and 50% is exposed as Python functions.

3. Usage examples

The Gammapy package should be considered as a toolbox out of which powerful analysis
scripts can be composed easily by astronomers even if they have very little programming experi-
ence. In the following section we present a selection of code examples, demonstrating how to set
up even complex analysis steps with just a few lines of code.

3.1 Command line tools

Gammapy includes ready to use command line tools, that provide a familiar interface to data
processing for many astronomers. An overview of all available tools can be listed using:

1 $ gammapy-info --tools

Alternatively one could type gammapy- and use tab completion, as all command line tools start
with the same gammapy- prefix. Specific information on single command-line tools and the de-
scription of available parameters is shown when calling the corresponding tool with the standard
-h or --help option.

3.1.1 Morphology fitting

Gammapy a simple to use command line script gammapy-sherpa-like to perform a Poisson
maximum likelihood morphology fitting using FITS files as input. The input counts, exposure
and background maps can be specified by the corresponding parameters --counts, --exposure
and --background. The source model is defined in JSON file and should be passed using the
--sources option. The model parameters for a multi-Gaussian point spread function (PSF) can
be specified in JSON format using the --psf option:

4

Gammapy is organised into sub-packages (like Scipy or Astropy). Its
API is mostly object-oriented, but where it makes sense we use
functions; not everything has to be a class.
Easy-to-use command-line tools are available for the most common
tasks, i.e. even if you don’t want to learn Python, you can use a
limited subset of Gammapy.

La
tit
ud

e

Longitude Ener
gy

Point 
Spread 
Function

�⇡

https://github.com/gammapy/enrico
https://gammapy.readthedocs.org/

