VHE Gamma-ray astronomy from the ground - Highlights

Mathieu de Naurois, LLR Ecole Polytechnique

Introduction

- More than 200 contributions from Atmospheric Cherenkov Telescopes submitted
- Personal, biased selection of results
- Many thank to the MAGIC and VERITAS collaboration for providing me their results

Detection Technique in a nutshelll

- Shower develop in the atmosphere
- Ultra relativistic e± emit Cherenkov light ~10km above ground
- Fast camera (1 ns) image the shower
- Stereoscopy greatly improve reconstruction and identification of particles

Instruments

■ MAGIC stereo upgrade: 2012

■ HESS-II

■ New 28m telescope: 2012

■ Major H.E.S.S. I Camera Upgrade 2015-2016

■ VERITAS upgrade: 2012

Gottschall: Poster 3 GA

Science Case

- Imaging of cosmic particle acceleration sites
- Physics of pulsars and pulsar winds
- Full sky surveys
- Probing the extragalactic background light
- Extreme variability of AGN
- Limits on dark matter and new physics
- Major contributions from all current instruments

Evolution of the Field

The Unknown, still searching for

- Dark Matter
- Exotic Physics

Galactic Science

HESS Legacy Survey

HESS Legacy Survey

HESS Legacy Survey

"Final" HESS catalog of survey sources

- Data collected 2004 2013
- 2673 h after quality selection
- Significance and flux maps
- Automatic pipeline for source extraction
- Likelihood fit : Gaussian components plus diffuse background

66 VHE sources +
 11 complex sources
 (e.g. shell SNR) excluded
 from pipeline

Deil: GA16

Pulsars and Nebulae

- Majority of identified source in the Galaxy are associated with young pulsars
- Synchrotron Nebula fed by the pulsar wind

Surveys: PWN population studies

Surveys are good for populations studies

- PWNs exhibit complex morphologies (reverse shock interaction)
- Statistical behaviour:
 - Most young pulsars associated with PWN
 - Extension, offset vs age
 - Fading with power
 - **.**..
- Some PWN exhibit peculiar characteristics
 - 3C58: very low luminosity (Least luminous TeV PWN) compared to spin-down power (Not efficient accelerator? Weak B Field?)

Klepser: GA03

PSR J1826-1334

Lopez-Coto: GA07

Mathieu de Naurois

VHE emission from Pulsars...

VHE History of Crab Pulsar:

- 2008: First detection of emission above 25 GeV from a pulsar (MAGIC)
- 2011: First detection of emission above 120-250 GeV (VERITAS)
- 2011: First spectrum 25-100 GeV (MAGIC)
- 2012: First spectrum 50-400 GeV (MAGIC)
- 2014: Bridge Emission ≥ 50 GeV (MAGIC)

Crab Pulsar

Thanh: Poster 1GA

- Deep observations
- MAGIC (320h) + Fermi-LAT
 - Pulsed Emission from 10 GeV to > 1 TeV
 - Emission from the bridge (toroidal bending of B lines?)
- VERITAS (195h)
 - Confirmation of Pulsed Emission > 400 GeV
- Era of precision measurement
- Challenges for pulsar models
 - emission from the neighbourhood of the Light Cylinder (r ~1600km)
 - Likely IC emission
 - Most compact accelerator so far

Vela Pulsar

Second VHE pulsar

- Second VHE pulsar (H.E.S.S.)
 - calibration source at the threshold in standard observation mode
 - Deep observation campaign needed to investigate maximum energy and variation of pulse profile with energy
 - γ-rays as low as 10 GeV!

Supernova Remnants

- Second population of VHE sources in Galaxy
- Young, historical supernova, in different evolution stages
 - High quality images, MWL data
- Olders SNRs proven to accelerate protons
 - In interaction with molecular clouds
- High energy often dominated by leptonic processes
 - Due to different efficiency of radiation mechanisms
 - Hadrons need target to be revealed
- SNRs can be pevatrons only during a short time

New TeV Shell-type SNRs

- IC 443 shell resolved by VERITAS
 - Spectra from different regions probe the environmental dependence of cosmic-ray diffusion
 - Evidence for hadronic acceleration in old SNRs
- New shell-type SNRs resolved by HESS
 - HESS J1534-471 & HESS J1912+101

Galactic Longitude

Tycho model (Slane et al., 2014), Fermi (this ICRC), VERITAS (this ICRC)

Spectro-Imaging of RXJ 1713-3946

10 years of H.E.S.S. data

- Factor 2 improvement in statistics
- Spatially resolved spectra
- Difference in X/γ radial profiles: Particle escape and/or B field geometry
- VHE astronomy can probe acceleration regions!

Large sample → **evolution of supernova remnants**

Galactic Centre

Complex morphology

VERITAS: correlation with radio, 3FGL & HESS

MAGIC observations at high zenith angle Fruck: GA14

HESS: Deep observation (250h)

Raw Sig Map

Diffuse emission (interaction of CRs with Molecular clouds)

Detection of Arc Source (HESS J1746- 285) above CMZ contribution (likely PWN)

Smith: GA10

VERITAS + Radio

Galactic Centre with H.E.S.S.

First Pevatron

- Central source: cut-off @ 10 TeV
- Diffuse emission shows no cut-off well > 10 TeV
- Emission likely due to propagation of protons accelerated around central black hole and diffusing away (projected radial distribution matches)
- Parent proton population up to 1 PeV (2.9 PeV @ 68% CL)

TeV gamma-ray binaries

- Extreme environment
- Complex physics:
 - Accretion/ejection in binary systems
 - Anisotropic radiation fields
 - Absorptions by pair creation
 - Variable conditions
- Very different periods
- Very different phenomenology
- Laboratories for acceleration & radiation mechanisms on human timescales

	Period (days)	M∗(M _⊙)
PSR B1259-63	1236	31
LS 5039	3.9	23
LS I +61 303	26.4	12
HESS J0632+057	315	16
1FGL J1018.6-5856	16.6	31

Swiss clocks?

LS 5039

- New H.E.S.S. II data
- Perfectly periodic (10 yrs)

H.E.S.S.

10 True energy [TeV]

PSR B1259-63

- New H.E.S.S. II data
- Consistent with previous observations
- Fermi Flare not detected

Origin of Fermi Flare still puzzling

LSI +61 303 – The fuzzy clock

- Compact object + Be star
- Orbital period: (26.496 ± 0.0028 days)
- MAGIC: Super-orbital period: (1667 ± 8) day (variation of accretion rate?)
- October 2014: VERITAS detection of exceptionally bright (> 25% of the Crab Nebula flux) and fast (< 2-day rise time) flares
 - rapidly changing conditions (possibly due to turbulent mixing of stellar and pulsar winds, a structured stellar wind, or interaction with stellar disk

O'Faolain de Bhroithe: GA10

Kar: Poster 3GA

Extremes objects in the LMC

- First glimpse of the LMC population of (stellar-type) particle accelerators
- Extreme environment:
 - Large CR density
 - Large IR
 - → Very efficient radiation mechanisms
- First TeV supperbubble
 - Possible sources of UHECRs

ivialifieu de madrois

Extragalactic Science

A quasar half a Universe away: PKS 1441+25 @ z = 0.939 !

- FSRQ @ z = 0.939
- MAGIC detection @ 25 σ
- VERITAS Confirmation
 - Up to 200 GeV
 - ~400 GeV accounting for z!
- Stringent constraints on the EBL < 1 µm from a single source

Redshift record

QSO B0218+357: Gravitationally lensed blazar @ z = 0.944!

- ~11.5d delay between the direct & lensed components (Fermi – 2012)
- Observations with MAGIC performed during the 2nd flare: detection of sub-TeV lensed emission
 - much more prominent emission than by Fermi
 - VHE emission from z~1 is strongly attenuated above ~100 GeV
 - GeV + sub-TeV observations can put constraints on the EBL models at z ≤ 0.94
 - impact on cosmology models

Lightening of a black hole: IC 310

- Viewing angle $10^{\circ} \le \theta \le 20^{\circ}$ (EVN Image)
 - Not a blazar, no strong Doppler Boost
- TeV Variability < 4mn (MAGIC)
 - Emission region constrained to < 0.2δRG
- Huge optical depth for γ-γ pair production due to small Doppler boost
 - → inconsistent with shock-in-jet model
- Magnetospheric model similar to pulsar models (e.g. Levinson & Rieger, 2011)
 - Acceleration of particles close to black hole in vacuum gaps
 - hard γ-ray spectrum due to electromagnetic cascading

Extensive MWL campaigns on Mrk421

- Mrk421 and Mrk501: "easiest" blazars: nearby, bright at all energy bands and no broad line region effects
- More than 25 instruments participate, from radio to VHE
 - Regular observations by MAGIC and VERITAS
 - Monitoring regardless of activity, also in "low states"
- Peculiar flare (January 2013):
 - Synchrotron and IC peak shifted to ~ 10 times lower energies
 - Never seen before for any blazar
 - "HBL moving towards IBL"
 - Low activity softened the X-ray and VHE spectra, but did not show spectral cutoffs

Noda: GA 12

Mirzoyan: GA07

Astroparticles

Dark Matter Searches

- Current target:
 - Galactic Centre Halo (H.E.S.S.)
 - Dwarf spheroidals
- Strategies
 - Deep observations (≥200 h)
 - Optimal statistical treatments
 - Search for annihilation lines
 Kieffer: GA05
 - MAGIC: Combination with Fermi-LAT
- Next step: combine results from H.E.S.S., MAGIC, VERITAS & Fermi-LAT

EBL constrains

- Absorption of VHE γ-rays by pair creation on EBL/CMB
- Achievable Constrains:
 - Single sources at large distance provide upper limits
 - PKS 1441-25 (VERITAS & MAGIC)
 - 1ES 1101+496 (MAGIC)
 - Measurement of several sources at different distances allow to measure the EBL (HESS)

First actual measurement of EBL

Conclusions

- Many NEW results presented in the next days – attend the sessions!
- VHE astronomy is experiencing a phase transition: key science projects, requiring deep (>100 h) exposure

Fishing-in-the dark time is over, precision measurement era is starting

"Kifune" plot 2015

Backup

