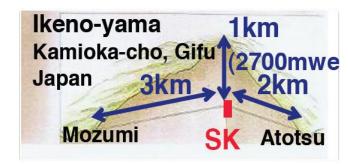
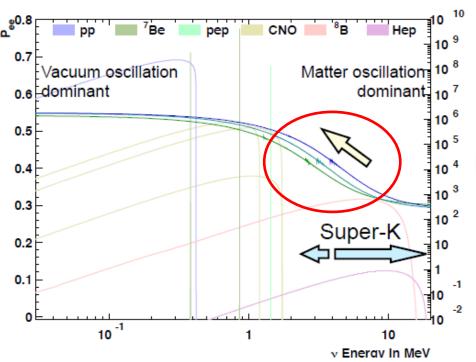

Solar neutrino results from Super Kamiokande

Yuuki Nakano
(ICRR, The Univ. of Tokyo)
for Super Kamiokande Collaboration
5th, August, 2015
ICRC 2015
@Hague, The Netherlands

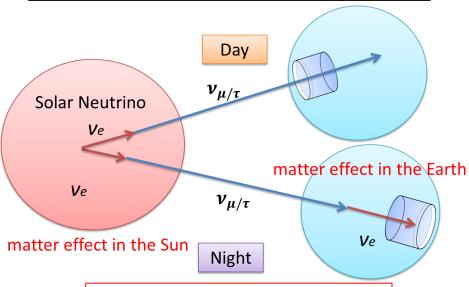


Super Kamiokande

- **♦** Feature of SK detector
- Water Cherenkov ring Imaging(50 kton).
- Structure
 - Height 41.4 m
 - Diameter 39.3 m
- Inner detector
 - 32 kton viewed by 20-inch PMTs
 - → fiducial volume 22.5 kton (2m from wall)
 - 11129 PMTs (Photo coverage 40 %)
- Outer detector
 - 2 m viewed by 1885 8-inch PMTs.
- **♦**Physics target
- -Long base line neutrino oscillation (T2K)
- -Atmospheric, Solar, Supernova neutrinos
- -Proton decay



Physics motivation for solar neutrino


◆Spectrum distortion

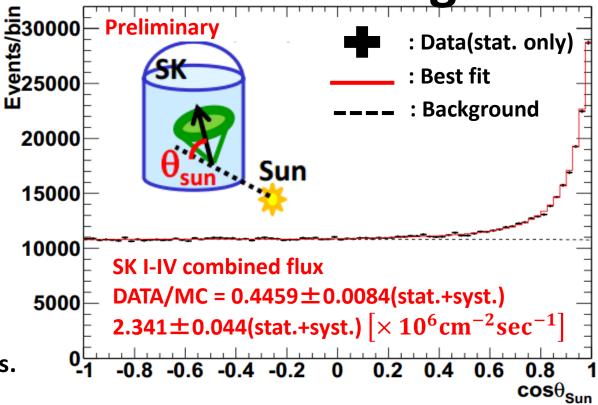
Super-K can search for the spectrum "up-turn" expected by neutrino oscillation MSW effect.

◆Day-Night flux asymmetry

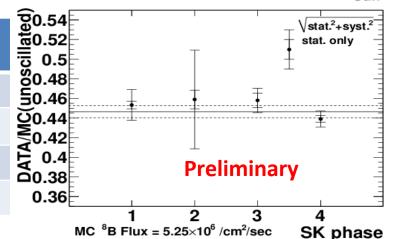
Due to the earth matter effect, electron neutrino is regenerated. The ⁸B flux during night is higher than that during day.

$$A_{\rm DN} = \frac{\Psi_{\rm day} - \Psi_{\rm night}}{(\Psi_{\rm day} + \Psi_{\rm night})/2}$$

Observed 8B solar neutrino signal


◆8B neutrino measurement

Cherenkov light generated by electron scattered by neutrino.


$$v_{\chi} + e^- \rightarrow v_{\chi} + e^-$$

A total of about 77k solar neutrinos were observed.

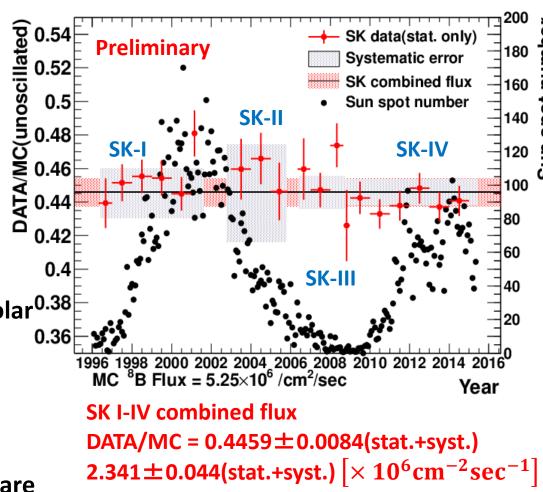
Measured ⁸B fluxes are consistent within uncertainties.

SK phase	Energy threshold [MeV(kin)]	Live time [day]	⁸ B Flux [× 10 ⁶ /cm ² /sec]
SKI	4.5-19.5	1496	$2.38 \pm 0.02 \pm 0.08$
SK II	6.5-19.5	791	$2.41\pm0.05^{+0.16}_{-0.15}$
SK III	4.0-19.5	548	$2.40\pm0.04\pm0.05$
SK IV	3.5-19.5	2034	$2.31 \pm 0.02 \pm 0.04$

⁸B solar neutrino yearly flux

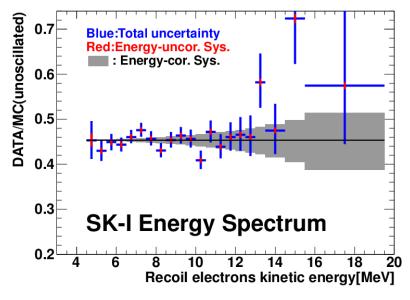
♦Solar activity cycle

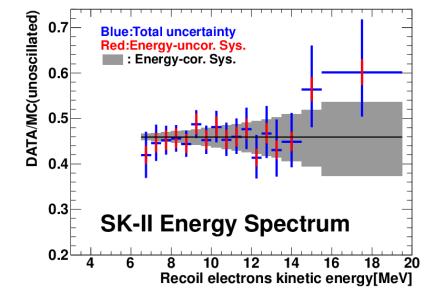
Sun spot numbers are strongly correlated with the solar activity cycle (~11 years).

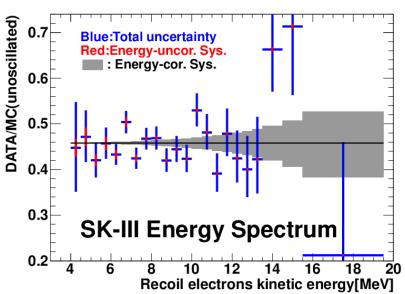

SK has observed ⁸B solar neutrino for ~18 years (~1.5 cycle).

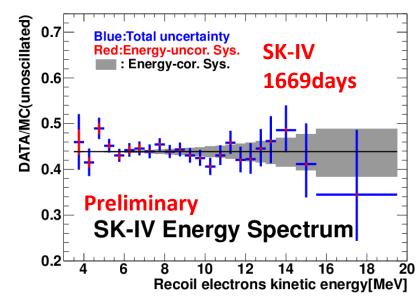
◆8B flux vs sun spot

No correlation with the 11 years solar^{0.38} activity is observed.

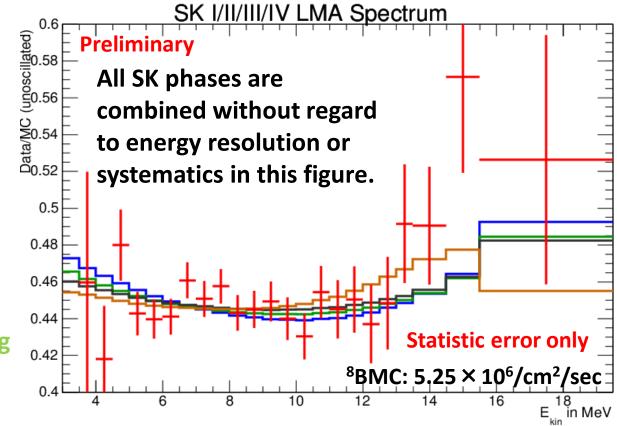

$$\chi^2 = 13.10/18(D.0.F)$$
Prob. = 78.6 %


Super-K solar rate measurements are fully consistent with a constant solar neutrino flux emitted by the Sun.




Sun spot number was obtained by the web page of NASA http://solarscience.msfc.nasa.gov/greenwch/spot_num.txt

Recoil electron spectrum of each SK phase


MC: $5.25 \times 10^6 / \text{cm}^2 / \text{sec}$

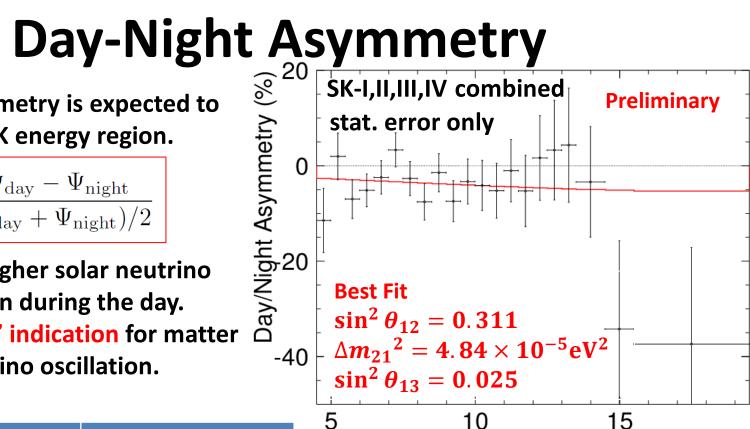
SK I-IV combined recoil electron spectrum

♦ Spectrum shape

SK can search for the "upturn" in its recoil electron energy spectrum.

MSW is slightly disfavored by ~1.7 σ using the Solar + KamLAND best fit parameters, and ~1.0 σ using the Solar Global best fit parameters.

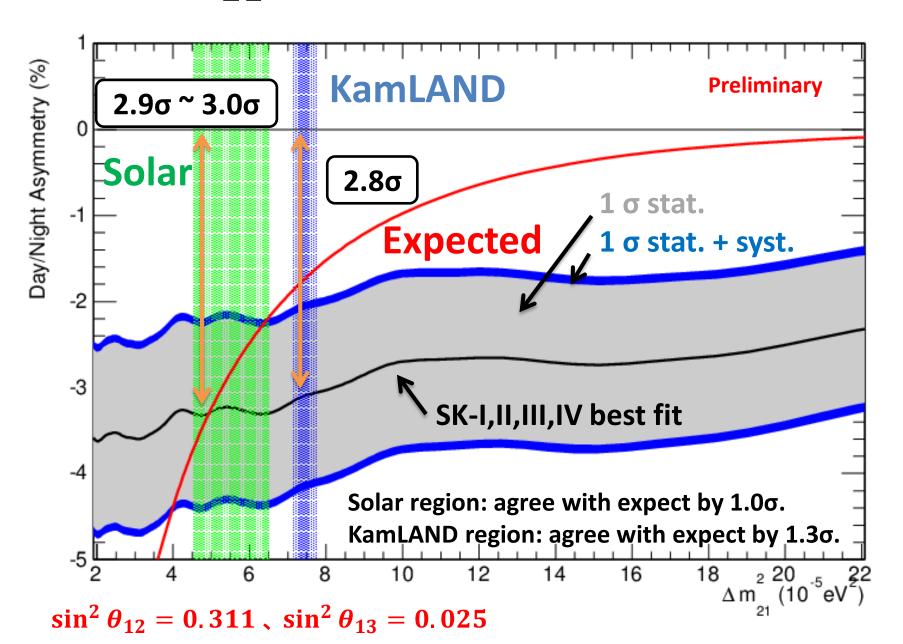
$P_{ee}(E_{v}) = c_0 + c_1 \left(\frac{E_{v}}{MeV} - 10\right) + c_2 \left(\frac{E_{v}}{MeV} - 10\right)^2 $ (quadratic)
$P_{ee}(E_V) = e_0 + \frac{e_1}{e_2} \left(\exp\left(e_2 \left(\frac{E_V}{MeV} - 10\right)\right) - 1\right) $ (exponential)

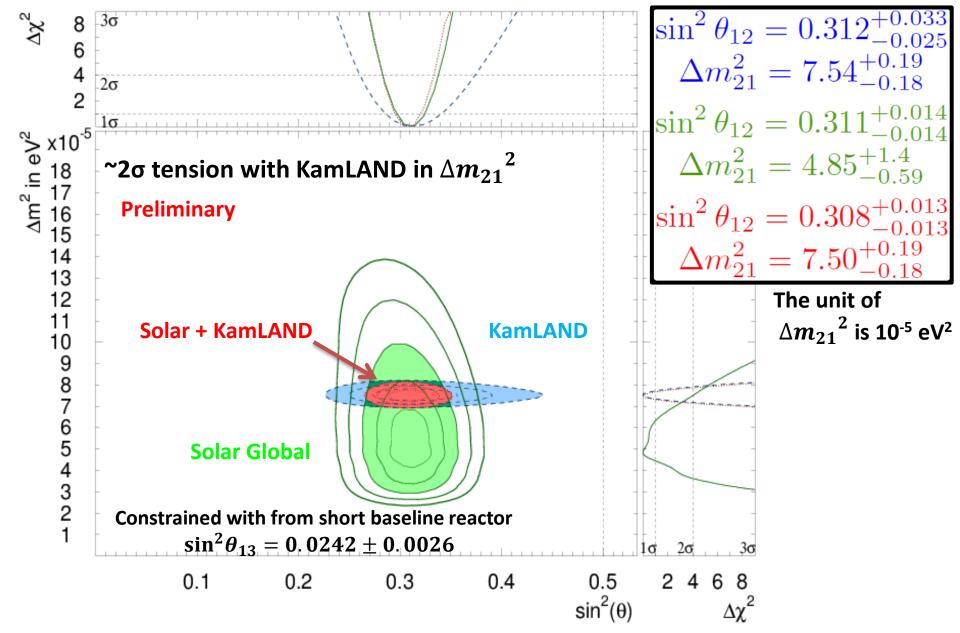

Total # of bins of SK I-IV is 83	χ ²
Solar + KamLAND	70.13
Solar global	68.14
Quadratic fit	67.67
Exponential	67.54

Day-Night asymmetry is expected to be ~3 % in the SK energy region.

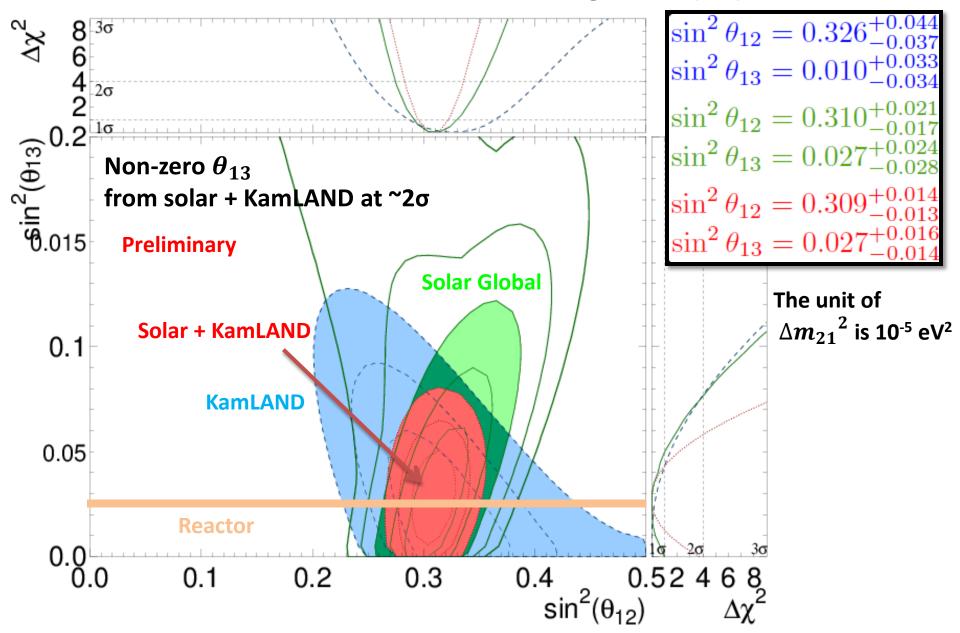
$$A_{\rm DN} = \frac{\Psi_{\rm day} - \Psi_{\rm night}}{(\Psi_{\rm day} + \Psi_{\rm night})/2}$$

SK confirms a higher solar neutrino flux at night than during the day. This is a "direct" indication for matter enhanced neutrino oscillation.


SK-phase	Amplitude fit [%]	Straight calc. [%]
SK-I	$-2.0 \pm 1.8 \pm 1.0$	$-2.1\pm 2.0\pm 1.3$
SK-II	$-4.3 \pm 3.8 \pm 1.0$	$-5.5 \pm 4.2 \pm 3.7$
SK-III	$-4.2 \pm 2.7 \pm 0.7$	$-5.9 \pm 3.2 \pm 1.3$
SK-IV	$-3.6 \pm 1.6 \pm 0.6$	$-4.9 \pm 1.8 \pm 1.4$
Combined	$-3.3 \pm 1.0 \pm 0.5$ (3.0 σ from zero)	$-4.1 \pm 1.2 \pm 0.8$ (2.8 σ from zero)



Expected time variation as a function of $\cos \theta_{z}$


Δm_{21}^2 vs Day/Night Asymmetry

Oscillation analysis (1)

Oscillation analysis (2)

Summary

- SK solar neutrino flux measurements agree across all phase.
 - No correlation with the solar activity cycle is seen.
- SK recoil electron energy spectrum slightly disfavors distortions.
- SK measures the solar neutrino day-night asymmetry.
 - First indication (2.8-3.0σ) of terrestrial matter effect on ⁸B solar neutrino oscillation.
- Solar global + KamLAND analysis gives:
 - $-\Delta m_{21}^{\ 2} = 7.50^{+0.19}_{-0.18} \times 10^{-5} \text{ eV}^2$,
 - $-\sin^2\theta_{12}=0.308\pm0.013\,,$
 - $-\sin^2\theta_{13} = 0.027^{+0.016}_{-0.014}$.

Back up

Detection method

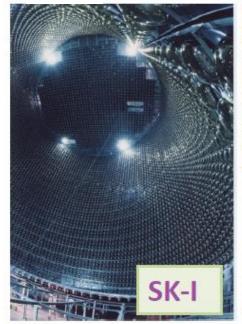
◆Cherenkov light

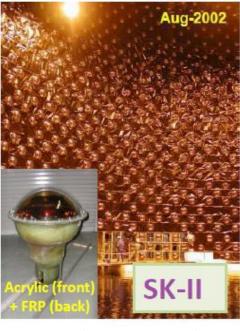
Emission if $n \times \beta > 1$

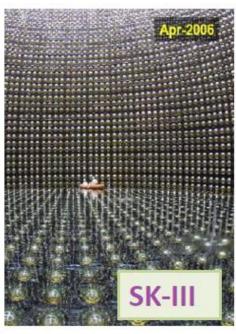
n: refractive index (water ~ 1.33)

 $\beta: p/E$

Direction : $\cos\Theta = 1/n\beta$


Θ~42°


of emitted Cherenkov photons~ 340 photons/1cm



History of Super Kamiokande

1996/4 ~2001/7 PMT(ID)

2002/10 ~2005/10 (※)With Acrylic + FRP

2006/7 ~2008/8 (X)Recovered

2008/9 ~ Running (**※**)New electronics

11146 PMTs 40% photo coverage

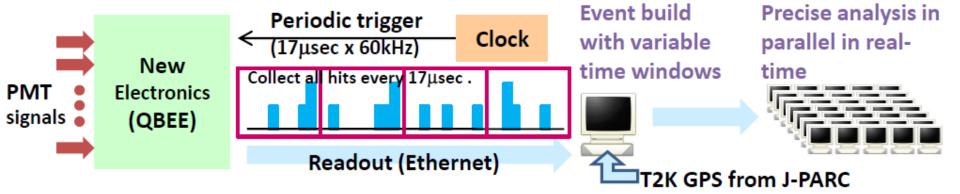
5182 PMTs 19% photo coverage

11129 PMTs

11129 PMTs 40% photo coverage 40% photo coverage

Kinetic Energy threshold **4.5 MeV** 6.5

MeV	4.0 MeV
iviev	4.0 IVIC V



SK-IV new DAQ system

♦ New front-end electronics

SK-I, II, III: partial data above threshold were read(1.3 micro sec window \times 3kHz).

→ SK-IV : All hits are read, then apply complex triggers with software.

◆Typical event time window

Туре	Time [μsec]	
Super low energy (SLE) events(< ~6.5 MeV, 3kHz)	-0.5/+1.0	
Normal Events(> ~6.5 MeV, 35Hz)	-5/+35	
Supernova relic neutrino candidates(SRN) (> ~8 MeV)	-5/+35 + <mark>500(AFT)</mark>	
T2K events (beam spill timing)	-512/+512	

Typical low energy event in SK

♦How to detect

Elastic scattering(ES) reaction is used for solar neutrinos

$$v_x + e^- \rightarrow v_x + e^-$$

- **◆**Reconstruction
- ◆Timing information→Vertex position
- Ring pattern
 - **→**Direction
- Number of hit PMTs
 →Energy(~6hits/MeV)
- **◆**Resolutions

Energy: 14 % Vertex: 55 cm Direction: 23° (for E = 9.5 MeV(kin.) electron)

Super-Kamlokande Run 1742 Event 102496 96-05-31:07:13:23 Innor: 103 hits, 123 pE Cuter: -1 hits, 0 pE (in-time) Triccer ID: 0x03 E= 9.086 GDN=0.77 COSSUN= 0.949 Solar Neutrico ID Time(ns) 1035-1055 1055-1075 $E_{total} = 9.1 MeV$ $\cos\theta_{\text{sun}} = 0.95$

Times (ns)

The Sun

♦The Sun

The Sun is a main-sequence star at the stage of stable hydrogen burning. It produces an intense flux of electron neutrinos as a consequence of the nuclear fusion reactions.

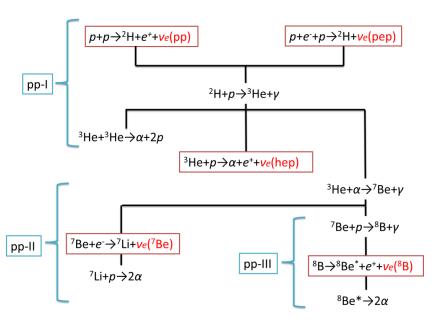
$$4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu_{e} + 26.7\text{MeV} - E_{v}$$

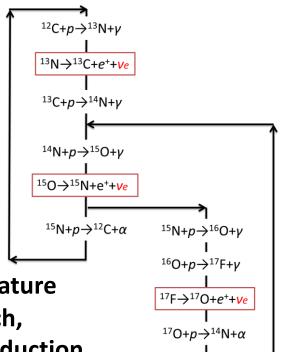
Property	Values	
Luminosity	3.86 × 10 ³³ erg/s	
Radius	6.96 × 10 ¹⁰ cm	
Thickness of the convective zone	~ 1.8 × 10 ¹⁰ cm	
Age	~ 4.5 × 10 ⁹ years	
Surface temperature	$\sim 5.58 \times 10^3 \text{ K}$	
Core temperature	$\sim 1.56 \times 10^7 \text{K}$	
Core density	~ 148 g/cm ³	

Solar neutrino

- **♦**Solar neutrino
- Electron type neutrino emitted from the core of the Sun.

$$4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu_{e} + 26.7\text{MeV} - E_{v}$$

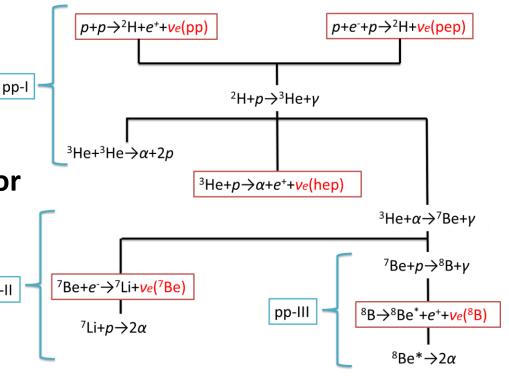

- ■These neutrinos carry away about 2-3% of the total energy emitted by the Sun.
- From the observed solar luminosity, the solar flux of neutrinos is about 6.0×10^{10} cm⁻²s⁻¹ on the Earth.
 - ◆pp chain


The main process responsible for the helium production.

→ detail is next page.

◆CNO cycle

This cycle dominates over the pp chain only if the temperature exceeds 1.8×10^7 K. For the Sun, this condition is not much, therefore this cycle contributes only 1.5% to neutrino production.



pp chain

♦pp chain

The main process responsible for the helium production.

5 kind of solar neutrinos are produced via this chain.

Туре	Contribution	Reaction	Energy[MeV]
рр		$p+p ightarrow^2\mathrm{H}+e^++v_e$	≤ 0.42
pep	86%(pp+pep)	$p+e^-+p ightarrow ^2{ m H}+v_e$	1.44
hep	10 ⁻⁷	$^3\mathrm{He} + p ightarrow ^4\mathrm{He} + e^+ + v_e$	\leq 18.77
⁷ Be	14%	$^7\mathrm{Be} + e^- ightarrow ^7\mathrm{Li} + v_e$	0.861
⁸ B	10-4	$^8\mathrm{B} ightarrow ^8\mathrm{Be^*} + e^+ + v_e$	\leq 14.06

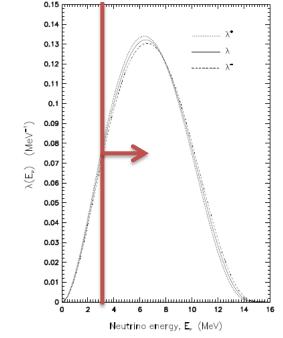
⁸B solar neutrino

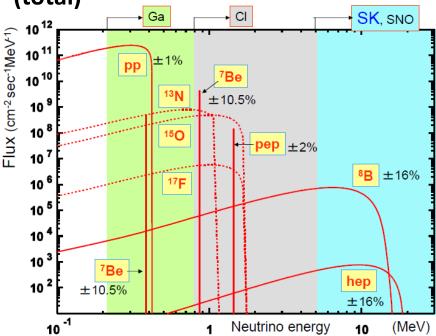
This neutrino is emitted through ⁸B decay.

$${}^{8}\mathrm{B} \rightarrow {}^{8}\mathrm{Be^{*}} + e^{+} + v_{e} (\leq 14.06\mathrm{MeV})$$

This neutrino carries away higher energy.

→ can detect with SK


But, the contribution for the flux is low(10⁻⁴).


- \rightarrow 5.79 × 10⁶ cm⁻²s⁻¹ (SSM) / 6.0 × 10¹⁰ cm⁻²s⁻¹(total)
- → need to prepare big scale detectors

♦ Neutrino Energy Spectrum

Energy spectrum of each solar neutrino branches are shown → (values mean theoretical uncertainty)

http://arxiv.org/pdf/nucl-th/9601044.pdf

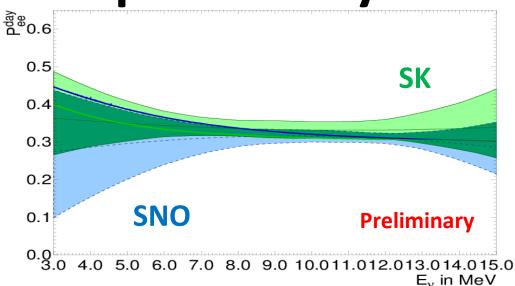
Global oscillation analysis input

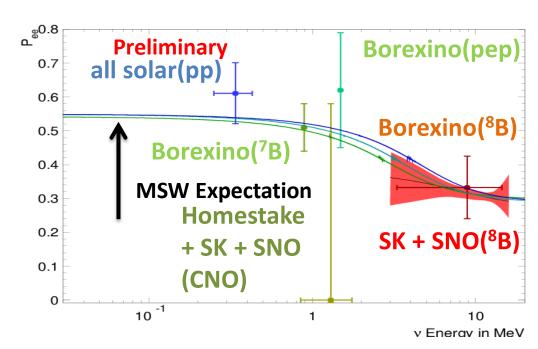
- SK-I 1496days, Spectrum: 4.5-19.5MeV(kin.) + D/N: Ekin≥4.5MeV
- SK-II 791days, Spectrum: 6.5-19.5MeV(kin.) + D/N: Ekin ≥ 7.0MeV
- SK-III 548days, Spectrum: 4.0-19.5MeV(kin.) + D/N: Ekin≥4.5MeV
- SK-IV 1669days, Spectrum: 3.5-19.5MeV(kin.) + D/N: Ekin≥4.5MeV

♦SNO

- Parameterized analysis (c0,c1,c2,a0,a1) of all SNO phased published in Phys.Rev.C88 (2013) 025501
- **◆**Radiochemical (Cl, Ga)
 - Ga rate 66.1 ± 3.1 SNU (All Ga global) (PRC80, 015807(2009))
 - Cl rate 2.56±0.23 (Astrophys.J. 496(1988) 505)

◆Borexino

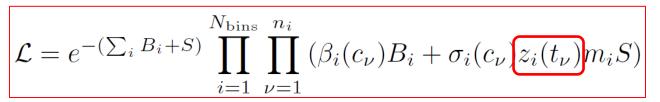

Latest ⁷Be flux (Phys.Rev.Lett. 107 (2011) 141302)


Does NOT include Borexino pp 2014

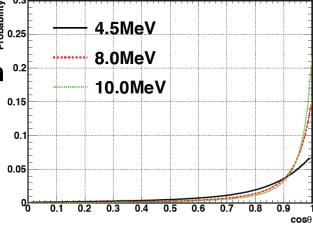
- **◆**KamLAND reactor
 - Latest(3-flavor) analysis -> PRD88, 3, 033001 (2013)
- **♦**8B spectrum
 - Winter 2006 → PRC73, 73, 025503 (2006)

Allowed survival probability

SK gives the world's strongest constraints on the shape of the survival probability in the transition region between vacuum oscillations and the MSW resonance.



Searching for the Day/Night effect


$$\mathcal{L} = e^{-(\sum_{i} B_{i} + S)} \prod_{i=1}^{N_{\text{bins}}} \prod_{\nu=1}^{n_{i}} (\beta_{i}(c_{\nu})B_{i} + \sigma_{i}(c_{\nu})m_{i}S)$$

- $N_{\mathrm{bin}}=23$: 20 bins (0.5MeV from 3.5MeV),
 - 2 bins (1MeV) and 1bin (4MeV)
 - $B_i\,$: # of background events, energy bins i
 - S : # of signal events
- $c_{
 u} = \cos heta_{
 u, \mathrm{Sun}}$: angle from solar direction $^{\scriptscriptstyle{0.2}}$
- $eta_i(c_
 u)$: background shapes
- $\sigma_i(c_
 u)$: signal shapes (solar peak)
- $m_i = rac{\mathrm{MC}_i}{\sum_k \mathrm{MC}_k}$: MC ratio of energy bin i

 $z_i(t_
u)$: New signal factor can include any time variable, such as zenith angle (day/night effect), distance(eccentricity, seasonal), etc.

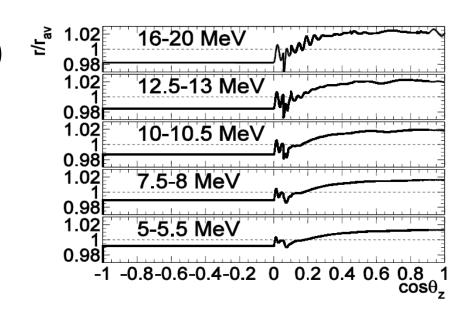
Searching for the Day/Night effect(2)

$$\mathcal{L} = e^{-(\sum_{i} B_{i} + S)} \prod_{i=1}^{N_{\text{bins}}} \prod_{\nu=1}^{n_{i}} (\beta_{i}(c_{\nu})B_{i} + \sigma_{i}(c_{\nu}) z_{i}(t_{\nu}) m_{i}S)$$

$$z_i(t_\nu) \to z_i(\alpha, t) = \frac{1 + \alpha((1 + a_i)r_i(t)/r_i^{\text{ave}} - 1)}{1 + \alpha a_i} \times z_{\text{exp}}(t)$$

lpha: Day/Night scaling parameter

 \mathcal{U}_i : Effective Day/Night asymmetry


 $r_i(t)$: rate in zenith bin of event(MC)

 $r_i^{ ext{ave}}$: livetime averaged rate

$$A_{\rm DN} = \frac{r_i^{\rm day} - r_i^{\rm night}}{(r_i^{\rm day} - r_i^{\rm night})/2} = \alpha \times A_{{\rm DN},i}$$

 $z_{\rm exp}(t)$

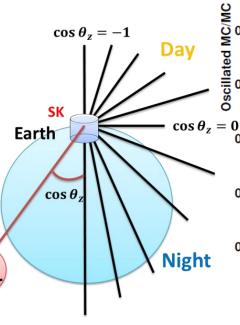
: take into account eccentricity corrections and the Day/Night MC efficiency difference, does not depends on α

Day/Night Asymmetry

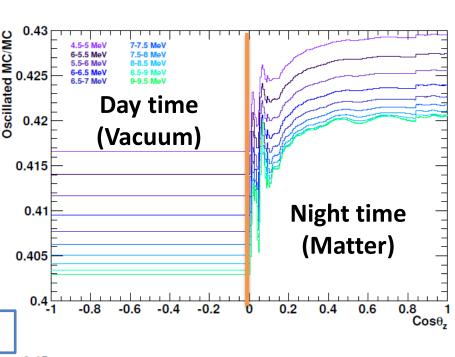
◆Day/Night Asymmetry

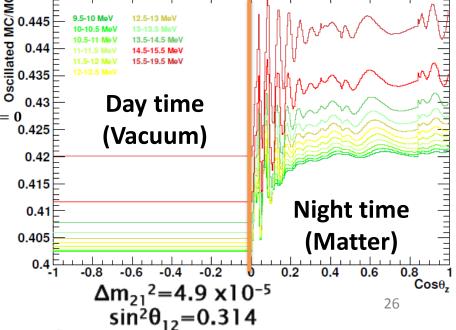
Compare ⁸B solar neutrino flux(Ψ) during day/night time.

$$A_{\rm DN} = \frac{\Psi^{\rm day} - \Psi^{\rm night}}{(\Psi^{\rm day} + \Psi^{\rm night})/2}$$



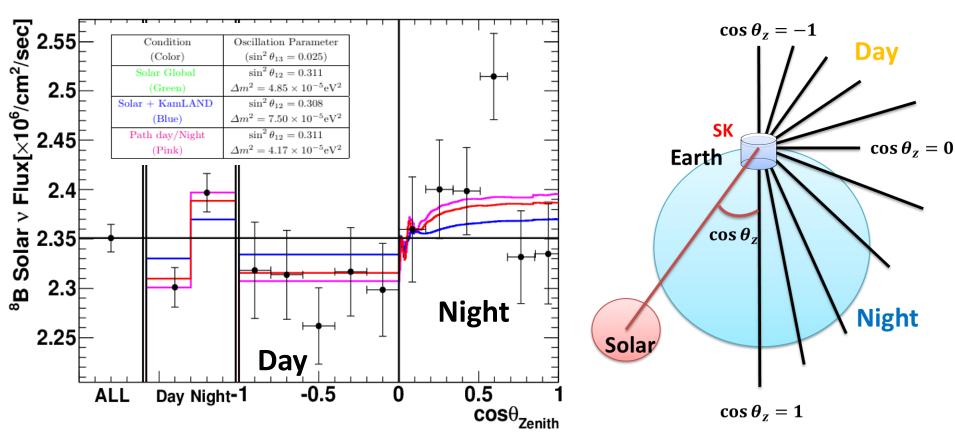
(1)Neutrino energy


(2)Mass Δm_{21}^{-2}


(3)Density of electron in the Earth

These parameters are considered in our solar analysis.

 $\cos \theta_z = 1$



Day/Night asymmetry

◆zenith angle distribution

Clear flux difference between day-time and night-time. Solar neutrino flux during night-time is higher than day-time.

SK - I,II,III,IV combined

Adn systematics

- ■Large reduction in energy scale error from SK-I to SK-III comes from introduction of z-dependence water transparency parameter into MC.
- External event cut had a negligible affect in SK-I and SK-II because no tight fiducial volume cut was applied.
- Total errors among SK phases are considered uncorrelated

	SK-I	SK-II	SK-III	SK-IV
Energy scale	0.8%	0.8%	0.2%	0.05%
Energy resolution	0.05%	0.05%	0.05%	0.05%
Background shape	0.6%	0.6%	0.6%	0.6%
External event cut	-	-	0.2%	0.1%
Earth model	0.01%	0.01%	0.01%	0.01%
Total	1.0%	1.0%	0.7%	0.6%