

Bundesministerium für Bildung und Forschung

Methods & Observables: Investigation of Cosmic Magnetic Fields using Ultra-High Energy Cosmic Rays

Gero Müller, Martin Erdmann, Martin Urban

Enhanced Correlation Analysis

- Recent galactic magnetic field parametrizations predict localized deflection
 - → Direction and
 - → Magnitude
- Correlate cosmic rays with expected arrival directions

20-200 EeV Galactic Coordinates Jansson, Farrar, 2012, ApJ, 757, 14; 2012, ApJ, 761, L11

Expected Arrival Direction

- Cosmic rays with energy E, assume Z=1
- 1) Source at distance D
- 2) Extra-galactic propagation: smearing(E, D, B) \rightarrow probability map
- 3) Galactic propagation: JF12 regular field (lensing technique)
- 4) Find expected arrival direction

Astrophysical Simulation

- AGNs from VCV catalog closest to selected 24 public IceCube neutrinos
- Propagate 10⁷ high energetic nuclei from each source using CRPropa 3:
 - Structured extra-galactic magnetic field
 - → Interactions
 - → Secondaries
- Propagate detected cosmic rays to Earth using JF12 regular field lens

Simulated Data Set

- 231 events
 - (see Pierre Auger Observatory publication)
- E > 52 EeV
- Signal: 23 cosmic rays (10%) from astrophysical simulation
 - \rightarrow 16 protons
- Background: 208 cosmic-rays with isotropic arrival direction AGN
- Pierre Auger Observatory geometric exposure

Angular Distance

 \rightarrow e.g. α , $\alpha_{GMF} < \alpha_0 = 5^{\circ}$

Magnetic Field Observable: Angular Asymmetry

Change in angular distance

= 0.962963

Magnetic Field Observable: Clustering

- Number of correlating events per
 - → Source
 - → Expected arrival direction

Cluster distribution probability
 P = multinomial distribution
 Observable: log(P_{GMF}) - log(P) ~ 4

Combine Observables

Random Sources

- Expected arrival directions:
 AGN sources
 JF12 regular field
- Cosmic rays:
 - → Astrophysical simulations
- 10000 variations:

Random source directions

→ 47 show improvement in both observables

Source directions important

Uncertainty in Source Direction

- Expected arrival directions:
 AGN sources
 JF12 regular field
- Cosmic rays:
 - → Astrophysical simulations
- 10000 Variations:
 - AGN sources with 15° directional uncertainty

Large uncertainties reduce sensitivity

Directional characteristics of galactic magnetic field

- Expected arrival directions:
 - → AGN sources
 - JF12 regular + striated + random, inverted
- Cosmic rays:
 - → Astrophysical Simulations
- 10000 Variations:
 - Isotropic cosmic ray arrival directions

Correct characteristics of magnetic field is essential to detect signal

Conclusion

Enhanced correlation method: expected arrival directions

- → Include extra-galactic and galactic deflections
- → Improved correlation count
- Observables for magnetic field investigations
 - → Angular Asymmetry
 - → Clustering
- Analysis method is:
 - → Sensitive to Galactic magnetic field structure
 - → Sensitive to selected source positions

Backup slides

Gero Müller - RWTH Aachen

Exceptional Cosmic rays

- Expected arrival directions:
 - \rightarrow AGN sources
 - → JF12 regular field
- Cosmic rays:
 - Astrophysical Simulations
- 10000 Variations:
 - Isotropic cosmic ray arrival directions
 - → 29 show improvement in both observables

Simulated cosmic rays can be identified

Random component of galactic magnetic field

- Expected arrival directions:
 - → AGN sources
 - JF12 regular + striated + random
- Cosmic rays:
 - Astrophysical Simulations
- 10000 Variations:
 - Isotropic cosmic ray arrival directions
 - → 10 show improvement in both observables

Random component has no effect on analysis

Correlations with transformed position

Gero Müller - RWTH Aachen

Motivation

Mean deflection for E>55 EeV

H.-P. Bretz et al., Astropart.Phys. C54 (Feb., 2014) 110-117, 1302.3761.

Galactic magnetic lenses

Lenses suited for sources at Mpc distance from the observer

Gero Müller - RWTH Aachen

Multinomial probability =probability of cluster configuration

$$P(n_1, \dots, n_{24}; N - N_{hit}) = \frac{N!}{n_1! \dots n_{24}! (N - N_{hit})!} p_1^{n_1} \dots p_{24}^{n_{24}} (1 - p_{iso})^{N - N_{hit}}$$

- *N* : total number of cosmic rays
- $N_{\rm hit}$: number of cosmic rays correlating with neutrinos $N_{\rm hit}$ = S $n_{\rm i}$
- p_{iso} : summed average neutrino hit probability $p_{iso} = Sp_i$
- *i* : neutrino identifier
- *p*_i : neutrino *i* average hit probability
- *n*_i : number of cosmic rays associated with neutrino *i*