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years by all major systems of imaging atmospheric Cherenkov telescopes. We present new obser-
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observations. HESS J0632+057 has been detected by VERITAS with a total significance > 20σ
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1. Introduction

Gamma-ray binaries are a small subclass of binary systems identified by variable emission
in the GeV-to-TeV range, and a peak in their spectral energy distribution at gamma-ray energies
(see [1] for a review). The presence of high-energy photons shows that they are efficient particle
accelerators. Where and how gamma rays are produced in these systems is not known at this point
and a number of possibilities are discussed in the literature. For accretion-powered sources, the
acceleration sites might be connected to internal shocks in the jet or the jet-stellar wind interaction
zone. Pulsar-powered scenarios propose the production of shocks by the interaction of a relativistic
pulsar wind with the stellar wind or the circumstellar disk. The presence of a strong stellar wind,
wind inhomogeneities (’clumping’), a dense circumstellar disk, the pulsar wind, and the orbital
movement results in dynamical changes of the physical conditions with a large number of free
parameters which complicates the interpretation of the existing data. More observations at high
energies are clearly necessary to get a better understanding of the underlying processes. We present
in these proceedings new observations of the gamma-ray binary HESS J0632+057 by the VERITAS
observatory in 2013-2015 and updated results from observations during the period 2006-2012.

HESS J0532+057 is a gamma-ray binary consisting of a massive star of type B0 Vpe (MWC
148=HD 259440) and a compact object (neutron or black hole) located at a distance of 1.1-1.7 kpc
[2]. It is a point-like very-high energy (>100 GeV) gamma-ray emitter serendipitously discovered
by the High Energy Stereoscopic System (H.E.S.S.) during observations of the Monoceros Loop
supernova remnant in 2004 and 2005 [3]. Gamma-ray observations by VERITAS revealed evidence
of variability [4], while long-term X-ray observations using the Swift X-ray Telescope (XRT) dis-
played periodical flux modulations [5]. These X-ray observations firmly established the binary
nature of the object. Further gamma-ray observations by VERITAS, H.E.S.S. [6] and MAGIC [7]
revealed a pattern of variability, with significant gamma-ray emission above 1 TeV in two different
phases ranges of the orbit. The orbital period of the binary system of (315± 5) days has been
derived from X-ray data [6], the orbital solution obtained from radial spectroscopy measurements
at optical wavelengths points towards an eccentric orbit (e ≈ 0.83, [8]). HESS J0632+057 is the
only gamma-ray binary which has not been detected at MeV-GeV energies with the Fermi LAT [9].

2. Gamma-ray and X-ray Observations

VERITAS is a gamma-ray observatory sensitive to photons in the energy range from 85 GeV
to >30 TeV. It is located at the Fred Lawrence Whipple Observatory in southern Arizona (31 40 N,
110 57 W) and consists of an array of four imaging atmospheric-Cherenkov telescopes (for details
on the instrument and its performance see [10, 11, 12]). HESS J0632+057 has been observed by
the VERITAS observatory for a total of 200 hours between 2006 December and 2015 January at
energies above ≈200 GeV. The results presented here have been obtained with updated analysis
algorithms compared to [6], with the most important change being the application of a boosted-
decision tree based gamma-hadron separation algorithm to the data. The sensitivity improvement
in comparison to the previous analysis based on box cuts is roughly 15-20% [11].

At X-ray energies, Swift-XRT monitored HESS J0632+057 at 0.3-10 keV from 2009 January
to 2015 January. The observations have typical durations of ≈4-5 ks taken at intervals between one
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week and several months. The data has been analysed using standard Swift tools [13].

3. Results

Figure 1: Long-term gamma-ray observations of HESS J0632+057 with VERITAS, H.E.S.S. [6], and
MAGIC [7] at energies >350 GeV and X-ray observations with Swift-XRT (0.3-10 keV; gray markers).

HESS J0632+057 has been detected as a source of gamma rays with a detection significance
of 20.5σ for the complete VERITAS set of observations. The gamma-ray emission is variable,
as can be seen from the observations spanning an interval of almost 10 years (Figure 1 and Table
1). Periods of flux levels below the detection limit of the instrument alternate with high flux states
reaching flux levels of ≈3% of the flux of the Crab Nebula at the same threshold energy of 350
GeV.

The updated set of Swift-XRT observations allows to reevaluate the determination of the orbital
period of the binary. The variation of the X-ray rate with time is non-sinusoidal, we therefore
choose for the analysis the Z-transformed discrete autocorrelation function (Z-DCF; [14]) and, for
cross checks, the phase dispersion minimisation method (PDM; [15]; see Figure 2 left) for the
analysis. Both methods give comparable results consistent with the value of τ2014

orbit = 315+6
−4 days

reported in [6]: τZDCF
orbit = 299+13

−15 days and τPDM
orbit = 313 days. We therefore continue to assume in the

following an orbital period of 315 days. Figure 2 (right) shows the phase-folded X-ray light curve,
revealing a regular pattern with two emission maxima at phases ≈0.35 and ≈0.75, and a marked
dip close to apastron at phases ≈0.45 (using the orbital solution of [8]). Note the orbit-to-orbit
variability of up to a factor of two in X-ray fluxes during the high-state phases.

The phase-folded VERITAS gamma-ray light curve for energies > 350 GeV (Figure 3) shows
a variability pattern across the orbit similar to the X-ray light curve. The first maximum at phases
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Figure 2: Left: Phase Dispersion Minimization (PDM) test statistic vs orbital period (in units of days)
calculated from the Swift-XRT data. The minimum value of the test statistic is at 313 days. Right: Phase
folded Swift-XRT X-ray light curve (0.3-10 keV). Different colours indicate different orbital periods.

Figure 3: Phase-folded VERITAS gamma-ray light curve for energies > 350 GeV using an orbital period of
315 days. The shaded areas indicated the selection of phase ranges used for the spectral analysis (see Table
1 and Figure 4.)
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0.2-0.4 is brighter than the emission at phases 0.6-0.75, but like the X-ray measurement exhibits
flux variability at similar phases. The binary is not only clearly detected around the second emission
maximum (phases 0.6-0.75 with 9.7σ significance), but also at later phases (7.1σ significance at
phases 0.8-0.2), indicating the possibility of constant low-level emission in the phases ranges 0.8-
0.2. No significant gamma-ray emission has been detected during the dip in X-ray fluxes around
apastron. The differential energy spectra in gamma rays during the two maxima can be described
by power-law distributions (Figure 4). The parameters of the spectral fits are consistent with each
other, which points towards similar physical conditions at the gamma-ray emission sites during the
high states before and after the apastron phase.

Orbital phase all phases 0.2-0.4 0.4-0.6 0.6-0.75 0.75-0.2
Observation time (h) 201.6 74 46 29 52
Significance (σ ) 20.5 19.2 2.5 9.7 7.1
Flux Normalization Φ0

at 1 TeV 4.1±0.2 7.18±0.43 - 5.58±0.74 3.23±0.49
Photon index γ 2.69±0.06 2.63±0.07 - 2.48±0.16 2.68±0.2
χ2/N 20.9/9 13.0/7 - 3.6/6 3.1/6

Table 1: Analysis results for energies >350 GeV for the phase-folded VERITAS measurements. The lower
three lines of the table show the fit results assuming a power-law distribution dN/dE = Φ0 ·E−γ of the data,
see Fig. 4. Errors are 1σ statistical errors. The flux normalisation constant Φ0 is in units of 10−13 cm−2 s−1

TeV−1.

Figure 4: Left: Gamma-ray (>350 GeV) fluxes vs. X-ray (0.3-10 keV) rates for contemporaneous observa-
tions (defined here as ±2.5 day intervals around the date of the gamma-ray observations). Right: Differential
energy spectra for gamma-ray photons for the orbital phase ranges 0.2-0.4 (black markers and black line)
and 0.6-0.8 (red markers and red line). The lines show results from fits assuming power-law distributions.
Fit results can be found in Table 1.

The indicated correlation between X-ray and gamma-ray emission is shown in Figure 4. A cor-
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relation analysis using the ZDCF method results in a significant correlation (ZDCF/ZDCFerror =

6.8). The time lag between X-ray and gamma-ray data is with +3.2+5.5
−7.8 days consistent with zero.

4. Conclusions

The X-ray and gamma-ray light curve of HESS J0632+057 stands out among the five known
gamma-ray binaries. It shows two maxima, with a sharp minimum in the emission pattern close to
the apastron phase. X-ray and gamma-ray fluxes are correlated. This is predicted by simple one-
zone leptonic emission models, where relativistic electrons lose energy by synchrotron emission
and inverse Compton emission. The latter process involves the upscattering of photons from the hot
stellar companion to gamma-ray energies. The exact origin of the flux variability is much harder to
identify, as it is very likely due to the combination of several physical processes; the most relevant
of which are discussed in the following.

The acceleration of charged particles in binary system is generally attributed to first order
Fermi acceleration in strong shocks formed between the stellar wind and the wind of the pulsar
(assuming that the compact object in HESS J0632+057 is a fast rotating neutron star). The shock
conditions are strongly dependent on the geometry of the system, and vary significantly during one
orbital period. The orbital movement and the Coriolis forces involved can lead to the formation
of several shocks in regions of varying gas and photon densities [16, 17]. Further away from the
shocked regions, acceleration of charged particles by occurring velocity shears of the relativistic
outflows have been predicted [18]. High accretion rates during the passage of the compact object
through the stellar disk or close to the massive star can lead to a quenching of the pulsar wind
and might be responsible for the sharp dip in the X-ray emission at phases ≈ 0.45. Note that
the extension, density and orientation of the disk of the Be star in HESS J0632+057 is mostly
unknown, although recent optical dispersion measurements indicate that the disk of the Be star
is likely as large as the binary orbit [19]. This setting is very similar to the flip-flop scenario
suggested for the gamma-ray binary LS I +61 303 [20], where periods in which the system is in the
rotationally powered regime alternate with the propeller regime. In addition, absorption of high-
energy gamma rays due to pair production is expected to be most important around periastron and
inferior conjunction, where HESS J0632+057 is in a low flux state (see e.g. [21]).

In summary, new and updated observations of the gamma-ray binary HESS J0632+057 by
VERITAS and Swift XRT provide significantly better measurements of the complex situation in
this gamma-ray binary. VERITAS will continue to observe HESS J0632+057 as part of the obser-
vatories’ long-term observing plan over the coming years.
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