Telescope Array search for photons and neutrinos with the surface detector data

G.I. Rubtsov, M. Fukushima, D. Ivanov, M.S. Piskunov,B. Stokes, G. Thomson, S.V. Troitsky for the Telescope Array Collaboration

34th ICRC The Hague, July 31, 2015

Telescope Array Collaboration

R.U. Abbasi¹ M. Abe¹³ T. Abu-Zayyad¹ M. Allen¹ R. Azuma³ E. Barcikowski¹ J.W. Belz¹ D.R. Bergman¹ S.A. Blake¹ R. Cady¹ M.J. Chae²⁰ B.G. Cheon⁴ J. Chiba⁵ M. Chikawa⁶ E.J. Cho⁴ W.R. Cho⁷ T. Fujii⁹
M. Fukushima^{10,11} T. Goto⁹ W. Hanlon¹ Y. Hayashi⁹ N. Hayashida¹⁰ K. Hibino¹² K. Honda² D. Ikeda¹⁰ N. Inoue¹³ T. Ishii² R. Ishimori³ H. Ito²⁷ D. Ivanov¹ C.C.H. Jui¹ K. Kadota¹⁵ F. Kakimoto³ O. Kalashev¹⁶ K. Kasahara¹⁷ H. Kawai¹⁸ S. Kawakami⁹ S. Kawana¹³ E. Kido¹⁰ H.B. Kim⁴ J.H. Kim⁴ J.H. Kim⁴ S. Kitamura³ Y. Kitamura³
V. Kuzmin¹⁶ Y.J. Kwon⁷ J. Lan¹ S.I. Lim²⁰ J.P. Lundquist¹ S. Machida³ K. Martens¹¹ T. Matsuda⁸ T. Matsuyama⁹ J.N. Matthews¹ M. Minamino⁹ Y. Mukai² I. Myers¹ K. Nagasawa¹³ S. Nagataki²¹ T. Nakamura²² T. Nonaka¹⁰ A. Nozato⁶ S. Ogio⁹ J. Ogura³ M. Ohnishi¹⁰ H. Ohoka¹⁰ K. Oki¹⁰ T. Okuda²³ M. Ono³⁰ A. Oshima⁹ S. Ozawa¹⁷ I.H. Park²⁰ M.S. Pshirkov²⁴ D.C. Rodriguez¹ G. Rubtsov¹⁶ D. Ryu¹⁹ H. Sagawa¹⁰ N. Sakura¹⁹ L.M. Scott¹⁴ P.D. Shah¹ F. Shibata² T. Shibata¹⁰ H. Shimodaira¹⁰ B.K. Shin⁴ H.S. Shin¹⁰ J.D. Smith¹ P. Sokolsky¹
R.W. Springer¹ B.T. Stokes¹ S.R. Stratton^{1;14} T. Stroman¹ T. Suzawa¹³ M. Takamura⁵ M. Takeda¹⁰ A. Taketa²⁵ M. Takita¹⁰ Y. Tameda¹⁰ H. Tanaka⁹ K. Tanaka²⁶ M. Tanaka⁹ S.B. Thomas¹ G.B. Thomson¹ P. Tinyakov^{24;16} I. Tkachev¹⁶ H. Tokuno³ T. Tomida²⁷ S. Troitsky¹⁶ Y. Tsunesada³ K. Tsutsumi³ Y. Uchihori²⁸ S. Udo¹² F. Urban²⁴ H. Yoshii²⁹ R. Zollinger¹ Z. Zundel¹

 ¹ University of Utah ² University of Yamanashi ³ Tokyo Institute of Technology ⁴Hanyang University ⁵ Tokyo University of Science ⁶Kinki University ⁷ Yonsei University ⁸KEK ⁹Osaka City University ¹⁰University of Tokyo (ICRR)
 ¹¹ University of Tokyo (Kavli Institute) ¹²Kanagawa University ¹³Saitama University ¹⁴ Rutgers University ¹⁵ Tokyo City University, ¹⁶ Russian Academy of Sciences (INR) ¹⁷ Waseda University ¹⁸Chiba University ¹⁹Chungnam National University ²⁰ Ewha Womans University ²¹ Kyoto University ²² Kochi University ²³ Ritsumeikan University ²⁴Universite Libre de Bruxelles ²⁵ University of Tokyo (Earthquake Institute) ²⁶ Hiroshima City University ²⁷ RIKEN ²⁸Japanese National Institute of Radiological Science ²⁹ Ehime University ³⁰ Kyushu University

Belgium, Japan, Korea, Russia, USA

Telescope Array surface detector

- 507 SD's, 3 m² each
- 680 km² area
- 7 years of operation

Largest UHECR statistics in the Northern Hemisphere

Photon-induced showers:

- arrive younger
- contain less muons
- ► ⇒ multiple SD observables affected:
 - ► front curvature, Area-over-peak, number of FADC signal peaks, χ²/d.o.f., S_b

Data and Monte-Carlo sets

- Data collected by TA surface detector for the seven years: 2008-05-11 — 2015-05-11
- p and γ Monte-Carlo sets with CORSIKA and dethinning

Stokes et al, Astropart.Phys.35:759,2012

Cuts for both data and MC:

- 7 or more detectors triggered
- core distance to array boundary is larger than 1200m
- χ²/d.o.f. < 5
 </p>
- θ < 60°
- ► $E_{\gamma} > 10^{18.5}$ eV (E_{γ} is estimated with photon Monte-Carlo) 26118 events after cuts

Note: MC set is split into 3 equal parts: (I) for training the classifier, (II) for cut optimization, (III) for exposure estimate.

Photon search: list of relevant observables

- 1. Linsley front curvature parameter, a;
- 2. Area-over-peak (AoP) of the signal at 1200 m;

Pierre Auger Collaboration, Phys.Rev.Lett. 100 (2008) 211101

- 3. AoP LDF slope parameter;
- 4. Number of detectors hit;
- 5. N. of detectors excluded from the fit of the shower front;

6.
$$\chi^2/d.o.f.;$$

7.
$$S_b = \sum S_i \times r^b$$
 parameter for $b = 3$;

Ros, Supanitsky, Medina-Tanco et al. Astropart. Phys. 47 (2013) 10

- 8. The sum of signals of all detectors of the event;
- 9. Asymmetry of signal at upper and lower layers of detectors;
- 10. Total n. of peaks within all FADC traces;
- 11. N. of peaks for the detector with the largest signal;
- 12. N. of peaks present in the upper layer and not in lower;
- 13. N. of peaks present in the lower layer and not in upper;

Multivariate analysis

 The Boosted Decision Trees (BDT) technique is used to build *p*-γ classifier based on multiple observables.

Pierre Auger Collaboration, ApJ, 789, 160 (2014)

root::TMVA is used as a stable implementation.

PoS ACAT 040 (2007), arXiv:physics/0703039

- BDT is trained with Monte-Carlo sets: γ (Signal) and p (Background)
- BDT classifier is used to convert the set of observables for an event to a number ξ ∈ [-1 : 1]: 1 - pure signal (γ), -1 pure background (p).
- ξ is available for one-dimensional analysis. The cut on ξ for the search is optimized using proton MC as a null-hypothesis.

Distribution of MVA estimator (ξ) for data and MC

data photon MC proton MC

- The photon candidates are selected using the cut on ξ: ξ > ξ_{cut}(θ)
- The cut is approximated as quadratic function of θ
- Cut is optimized in each energy range using proton Monte-Carlo
 - The merit factor is an average photon upper limit in the case of null-hypothesis (all protons)

- Geometric exposure for $\theta \in (0^\circ, 60^\circ)$: 9340 km² sr yr
- Effective exposure is estimated using photon MC assuming E⁻² primary spectrum

E ₀	$n_{det} \ge 7$	χ^2 and energy cut	ξ-cut	X _{eff} km ² sr yr
10 ^{18.5}	11.5%	80.3%	11.2%	96
10 ^{19.0}	55.2%	79.2%	16.1%	656
10 ^{19.5}	78.3%	71.2%	27.9%	1448
10 ^{20.0}	91.0%	73.0%	44.6%	2760

Zenith angle dependent cut on ξ : MC

Zenith angle dependent cut on ξ : MC

Zenith angle dependent cut on ξ : data

Results: photon flux limits

E ₀	N. cand	<i>Ī</i> √ (95% C.L.)	X _{eff}	$F < , \mathrm{km}^{-2}\mathrm{sr}^{-1}\mathrm{yr}^{-1}$
10 ^{18.5}	0	3.09	96	0.032
10 ^{19.0}	0	3.09	656	0.0047
10 ^{19.5}	0	3.09	1448	0.0021
10 ^{20.0}	0	3.09	2760	0.0011

models from J. Alvarez-Muniz et al. EPJ Web Conf. 53, 01009 (2013)

Comparison with the other experiments

AGASA, Astrophys. J. **571**, L117 (2002) Yakutsk, Phys. Rev. **D82**, 041101 (2010) Auger, Astropart. Phys. **29**, 243 (2008); Astropart. Phys. **31**, 399-406 (2009)

Neutrino search strategy

Neutrino produces very inclined young shower

long, many peaks

one peak

• Down-going ν search based on MVA is in progress

Conclusions and outlook

- A new technique for photon search based on the multivariate analysis
- Photon flux limits above 10^{18.5} eV

Ongoing searches:

- photon point sources
- down-going neutrino, E > 10¹⁸ eV

Backup slides

Impact of possible proton MC systematics

 Proton MC is used for MVA estimator training and cut optimization

Systematics in proton MC affects the method sensitivity

- 1. protons are closer to photons that data: exposure is underestimated
- 2. data are closer to photons than protons: extra photon candidates in the data set
- In both cases the flux limits stay conservative

SD observable: Area over peak

Consider a surface station time-resolved signal

- Both peak and area are well-measured and not much affected by fluctuations
- First introduced by Pierre Auger Collaboration in the context of neutrino search

Event reconstruction: fit functions

► Joint 7-parametric fit: x_{core} , y_{core} , θ , ϕ , S_{800} , t_0 , a

$$f(r) = \left(\frac{r}{R_m}\right)^{-1.2} \left(1 + \frac{r}{R_m}\right)^{-(\eta - 1.2)} \left(1 + \frac{r^2}{R_1^2}\right)^{-0.6}$$
$$LDF(r) = f(r)/f(800 \text{ m})$$

$$S(r) = S_{800} \times LDF(r)$$

 $t_0(r) = t_0 + t_{plane} + a \times 0.67 (1 + r/R_L)^{1.5} LDF(r)^{-0.5}$

$$R_m = 90.0 \text{ m}, \ R_1 = 1000 \text{ m}, \ R_L = 30 \text{ m}$$

 $\eta = 3.97 - 1.79(\sec(\theta) - 1)$