EUSO-Balloon: Observation and Measurement of Tracks from a laser in a Helicopter

Johannes Eser et al. – Colorado School of Mines (jeser@mines.edu)

EUSO-Balloon

- JEM-EUSO prototype:
 - Instrument testing for ISS
 - Measuring UV-background
 - Testing calibration system
- First flight: 24th/25th August 2014
- Properties:
 - Aperature: 1m²
 - FoV: 11° x 11°
 - 2304 pixel
 - Single photon counting
- 5h at float altitude (38km)
- 2.5h helicopter+laser underflight
- 270 recorded laser tracks

Fig1: EUSO balloon launch August 24th /25th 2014

The laser system

355nm $E_1 = 15 \text{mJ}$ $E_{2} = 10 \text{mJ}$ Rep. Rate: 19Hz Relative energy measurement every shot (PickOff probe)

scattered

LASER:

Fig2: UV-laser system mounted on a Bell 212. UV-LED, Xe-Flashlamp mounted outside

in the basket.

Ottawa

• 3 light sources

The helicopter underflight

 Tracking balloon with GPS tracker Circular flight pattern (R< 4km): laser points always into the FoV Laser fired horizontally shooting for

(UV-LED, UV-laser, Xe-Flashlamp)

38km

Fig5: Timeline of the balloon and helicopter mission

LASER light 8 km

Detector

Fig6: Sketch of the helicopter underflight.

Fig2: Flight of balloon(blue) and helicopter (red)

Geometric reconstruction

Fig7: Illustration of the geometrical direction reconstruction of the laser tracks fired from the helicopter with observables of the balloon.

$$t_{i,expected} = T_0 + \frac{R_P}{c} \tan \left(\frac{\pi}{4} + \frac{\psi_0 - \psi_i}{2} \right)$$

 T_0 : time of closest approach R_p : distance of closest approach Ψ_0 :angle to R_p in SDP Ψ_i:angle between shower and detector in SDP

- Small change in angular speed over observed track length (low curvature) time vs angle)
 - Large uncertainties possible for 3 parameter fit
- Reduce fit to one parameter using the known position of the helicopter

$$t_{i,expected} = t_H - \frac{R_H}{c} \left(1 - \sin(\psi_H - \psi_0) \right) + \frac{R_H \cos(\psi_H - \psi_0)}{c} \tan\left(\frac{\pi}{4} + \frac{\psi_0 - \psi_i}{2} \right)$$

 $R_{\rm H}$: distance helicopter detector, $t_{\rm H}$: time of first appearance in the camera,

Fig9: Timing profile of a laser event with constant 0.5 GTU timing error.

Preliminary results

- Improvement: applying calibration and IR data
 - Most common value 90°-92° consistent with expected value due to helicopter

Fig10: Zenith angle reconstruction of the helicopter laser shots with the 1 parameter fit method

Conclusion

#

- Developing of reliable laser system to be used in a helicopter
- Successful tracing of balloon
- Successful and first helicopter underflight (pattern)
- 270 recorded tracks
- First tracks measured from above
- Zenith angle reconstruction current resolution 7.8°
- Most common value agrees with expectation due to helicopter tilt