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A Surface Veto for IceCube

Crucial in the IceCube detection of

\._air shower astrophysical neutrinos is the

reduction of background by veto

techniques, either by using the outer

layers of the detector [1], or with an

_surfacearray  array on the surface to tag particles

of atmospheric origin by detecting

the accompanying air shower. We
follow two strategies:

e Fast simulations based on lateral
distribution functions.

e Detailed CORSIKA [2] simulations.

LDF-based Monte Carlo simulation

The basis of the simulations are lateral distribution functions (LDFs) [3,4], describing the particle density of the
electromagnetic and muonic components of air showers of a given energy. The LDFs are evaluated at the positions of
simulated detector stations, and the Poisson probability for a “hit” is calculated. 10 000 showers are simulated at each point
in the (6, E) parameter space . The array is “triggered” by a shower if at least one hit is detected.
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The approach takes into account the atmospheric
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Orange: electron hits, blue: muon hit.

Results from the LDF-based simulation
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A detection efficiencies, obtained with the LDF-based Monte Carlo simulation for three geometries.

Air Shower CORSIKA simulations
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o 0 | Detector: Regular triangular grid array of scintillation detectors 1 cm thick.
- . | Considering various array spacings and detector areas.

Three different array configurations are studied:

* |ceVeto, an extension of the existing IceTop array, 943 additional IceTop-like tanks.
e 125 m rectangular grid array with 5 m? scintillators at each station.

e 200 m array with very large 40 m? scintillators.

All geometries cover the elevation of the Galactic Center (6 = 61°).

Qualitatively, two distinct regimes for a surface veto:
e Vertical case: Detection efficiency is larger for EM component
e Inclined case: Detection efficiency is larger for muon component
as the large atmospheric depth causes the EM component to die out.
(The 99% lines cross at about 103> TeV and cos(8)=0.5 in the case of the 125 m array.)

lceVeto geometry becomes efficient from muons at primary energies above 10 PeV.
A higher instrumentation density shifts the distributions toward lower energies.
Only the 200 m grid array with the largest collection area is more than 99% efficient
over almost the whole parameter space.

In the future we plan to update this simulation with more recent LDFs [5,6].
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