

The Tunka Radio Extension: two years of air-shower measurements

Dmitriy Kostunin for the Tunka-Rex Collaboration

3rd August 2015

Helmholtz Russian Joint Research Group 303

INSTITUT FÜR KERNPHYSIK

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

$\textbf{Tunka-133} \rightarrow \textbf{TAIGA}$

Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy

Cosmic ray detectors

- Tunka-133 air-Cherenkov
- Tunka Radio Extension (Tunka-Rex)
- Tunka-Grande scintillators

Gamma ray detectors

- HiSCORE
- IACTs

see contibution PoS 1012 by L. Kuzmichev

nac

Tunka facility

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tunka-Rex detector

- Radio quiet rural location
- Strong geomagnetic field ($\approx 60 \ \mu$ T)
- Absolute amplitude calibration (see contribution PoS 573 by R.Hiller)
- Joint operation of radio and air-Cherenkov detectors
- Goal: precision of radio reconstruction for shower parameters (energy and shower maximum)
- Super-hybrid measurements soon: radio + air-Č + e/μ

Events aquisition and reconstruction

Effective time of measurements: 280 hours Event rate: \approx 1 candidate per hour

- Searching of the signal in power trace
 - Digital filtering
 - SNR>10
 - $N_{\rm ant} \ge 3$
 - \Rightarrow 244 events found
- Rejecting false positive events
 - Rejecting outliers from the LDF (using Tunka-133 core coordinates)
 - Reconstruction of arrival direction with plane fit
 - Comparison with Cherenkov reconstruction ($\Delta\Omega < 5^{\circ}$)
 - \Rightarrow 88 events remain

For analysis we use the radio part of the Auger Offline software Pierre Auger Collaboration, NIM A 635 (2011) 92

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Events aquisition and reconstruction

- Quality cuts (for X_{\max} reconstruction)
 - at least one antenna at $d_{\rm axis} > 200\,{\rm m}$
 - \Rightarrow 64 events remain
 - fit uncertainty $\sigma(X_{\rm max}) < 50 \, {\rm g/cm^2}$
 - \Rightarrow 25 events remain

Lateral distribution asymmetry

Both methods describe the same physics and should converge.

¹published in JCAP 1505 (2015) 05, 018

²[arXiv:1504.05083], submitted to Astropart. Phys. 🕢 🖬 🖉 🖉 😨 🖉 ఇంగా 🖉 🖓 శిత్రం 👔 🖉 ఇంగా 🖉

Asymmetry correction

Correction operator $\hat{K} = (\varepsilon^2 + 2\varepsilon \cos \phi_g \sin \alpha_g + \sin^2 \alpha_g)^{-\frac{1}{2}}$ α_g is geomagnetic angle, $\varepsilon = 0.085$ is asymmetry, ϕ_g is azimuth of antenna

Air-shower reconstruction

 $X_{\max} = X_0 / \cos \theta - (A + B \log(\eta(r_x) + \bar{b}))$

< □ > < 団 > < Ξ > < Ξ > < Ξ > < Ξ < つへの</p>

Energy correlation

Shower maximum correlation

Combined resolution: $\sigma \approx 50 \text{ g/cm}^2$ for 25 measured events Radio simulations (noise included): $\sigma_{\rm proton} = 25 \text{ g/cm}^2$, $\sigma_{\rm iron} = 40 \text{ g/cm}^2$

Tuning and Prediction seasons

The encrypted file with reconstruction of blinded data can be found on http://reco.tunkarex.info

Conclusion

- Tunka-Rex successfully operates since 2012.
- The combined resolution of E_{pr} and X_{max} after cross-calibration is comparable with non-imaging techniques.
- Tunka-Rex has proven that sparse low-cost radio arrays are feasible for the ultra-high energy cosmic rays detection.

Outlook

- Tunka-Grande will be calibrated using hybrid measurements with Tunka-Rex.
- After the starting hybrid measurements with doubled core shower maximum resolution should be improved to 40 g/cm².

ペロト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 1 回 * 1 の 4 の 4

BACKUP

Dmitriy Kostunin - Tunka-Rex: two years of air-shower measurements

3rd August 2015 14/26

Tunka-Rex Collaboration

P.A. Bezyazeekov¹, N.M. Budnev¹, O.A. Gress¹, A. Haungs², R. Hiller²,
T. Huege², Y. Kazarina¹, M. Kleifges³, E.N. Konstantinov¹,
E.E. Korosteleva⁴, D. Kostunin², O. Krömer³, L.A. Kuzmichev⁴,
R.R. Mirgazov¹, L. Pankov¹, V.V. Prosin⁴, G.I. Rubtsov⁵, C. Rühle³,
F.G. Schröder², R. Wischnewski⁶, A. Zagorodnikov¹

¹Institute of Applied Physics ISU, Irkutsk, Russia
 ²Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Germany
 ³Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT), Germany
 ⁴Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia

⁵Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

⁶DESY, Zeuthen, Germany

Data acquisition and event merging

- Every run local clocks set to zero
- Cluster centers have independent triggers (more than 2 simultaneous signals from PMT consider as event)
- Delays in optical fibers are taken into account. Event time is
 - T =local time + fiber delay
- We merge separate events with $\Delta T \leqslant 7000$ ns into one
- UTC time sets for each event in DAQ center and then data reader choses one for merged event.

イロト イヨト イヨト

DQ P

Sample signal trace

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dmitriy Kostunin - Tunka-Rex: two years of air-shower measurements

Event distribution

Convergence of energy estimator

$$\begin{split} \mathcal{E}(r_{\rm e}) &= \kappa E_{\rm pr} \sqrt{\varepsilon^2 + 2\varepsilon \cos \phi_{\rm g} \sin \alpha_{\rm g} + \sin^2 \alpha_{\rm g}} \\ & \text{Taylor series} \\ \mathcal{E}(r_{\rm e}, \phi_{\rm g} = \pi/2) &= \kappa E_{\rm pr} \sin \alpha_{\rm g} \sqrt{1 + \frac{\varepsilon^2}{\sin \alpha_{\rm g}^2}} \\ &= \kappa E_{\rm pr} \sin \alpha_{\rm g} \left(1 + \frac{1}{2} \frac{\varepsilon^2}{\sin \alpha_{\rm g}^2} + \mathcal{O}\left(\frac{1}{\sin \alpha_{\rm g}^4}\right)\right) \\ \text{Formula } E_{\rm pr} &= \frac{\mathcal{E}(r_{\rm e})}{\sin \alpha_{\rm g}} \text{ works while } \sin \alpha_{\rm g} \gg \frac{\varepsilon}{\sqrt{2}} \\ \text{For } \varepsilon \approx 15\%: \alpha_{\rm g}^{\rm lim} \approx 0.1 \ (6^{\circ}) \end{split}$$

Parametrization $a_2(E_{\rm pr},\theta)$

nac

Shower maximum correlation

DQ P

Theoretical and experimental resolution

Correction influence on resolution

Reconstructed spectra

Distribution of simulated X_{max}

