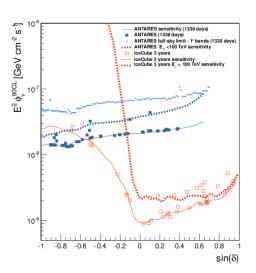
Neutrino point source search including cascade events with the ANTARES neutrino telescope

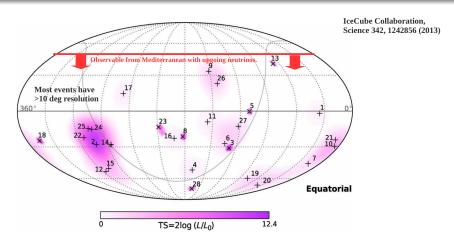
Tino Michael

National Institute for Subatomic Physics, Amsterdam

on behalf of the ANTARES collaboration

34th International Cosmic Ray Conference den Haag, The Netherlands 2015-08-03




Previous Sensitivities

Status Quo:

- even though much smaller than IceCube, ANTARES provides best sensitivities for lower declinations
- ANTARES dominates southern hemisphere below 100 TeV (where most galactic signal is expected)
- ullet best sensitivities so far: $E^2 \Phi_{
 u} pprox 1.4 \ {
 m GeV cm^{-2} s^{-1}}$ and slowly rising for higher declinations

Cosmic Neutrinos discovered by IceCube

- most of the events have resolution $> 10^{\circ} \rightarrow$ sources unknown!
- flux is large and extends to PeV energies
- possible point source around Galactic Centre has been largely constrained
 - → Poster by Javier B. Martí (636)

Motivation

- up to now, muon candidates backbone of most ANTARES analyses
- ullet clean signature and very well reconstructible (median resolution $pprox 0.4^\circ$)
- limits us to $\nu_{\mu} \rightarrow \mu$ (and $\nu_{\tau} \rightarrow \tau \rightarrow \mu$) interactions
- shower events open window to

$$\nu_e \rightarrow e$$

$$\nu_{\rm x} \rightarrow hadr$$
.

$$u_{ au}
ightarrow au
ightarrow e/hadr.$$

- have lower angular resolution but still valuable because of much lower background
- developed a cascade reconstruction algorithm with focus on pointing accuracy

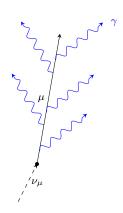
Muons:

- can pass through detector
- Cherenkov radiation along track
- photons emitted at $\varphi_{\rm Ch} \approx 42^{\circ}$

- cascade of particles within few metres
- can be approximated as point source
- · emits shell of light in all directions
- still, more light emitted under "Cherenkov angle"

Muons:

- can pass through detector
- Cherenkov radiation along track
- photons emitted at $\varphi_{\rm Ch} \approx 42^{\circ}$


- cascade of particles within few metres
- can be approximated as point source
- · emits shell of light in all directions
- still, more light emitted under "Cherenkov angle"

Muons:

- can pass through detector
- Cherenkov radiation along track
- ullet photons emitted at $arphi_{
 m Ch}pprox 42^\circ$

- cascade of particles within few metres
- can be approximated as point source
- · emits shell of light in all directions
- still, more light emitted under "Cherenkov angle"

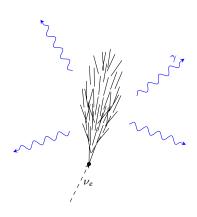
Muons:

- can pass through detector
- Cherenkov radiation along track
- photons emitted at $\varphi_{\rm Ch} \approx 42^{\circ}$

- cascade of particles within few metres
- can be approximated as point source
- · emits shell of light in all directions
- still, more light emitted under "Cherenkov angle"

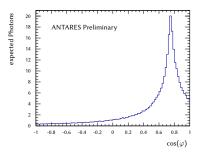
Muons:

- can pass through detector
- Cherenkov radiation along track
- photons emitted at $\varphi_{\rm Ch} \approx 42^{\circ}$


- cascade of particles within few metres
- can be approximated as point source
- · emits shell of light in all directions
- still, more light emitted under "Cherenkov angle"

Muons:

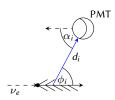
- can pass through detector
- Cherenkov radiation along track
- photons emitted at $\varphi_{\rm Ch} \approx 42^{\circ}$


- cascade of particles within few metres
- can be approximated as point source
- · emits shell of light in all directions
- still, more light emitted under "Cherenkov angle"

Muons:

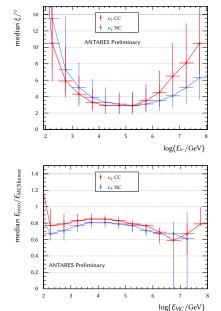
- can pass through detector
- Cherenkov radiation along track
- \bullet photons emitted at $\varphi_{\mathrm{Ch}} \approx 42^{\circ}$

- cascade of particles within few metres
- can be approximated as point source
- · emits shell of light in all directions
- still, more light emitted under "Cherenkov angle"



expected number of Photons from a 1 TeV shower on a PMT 100 m from the shower

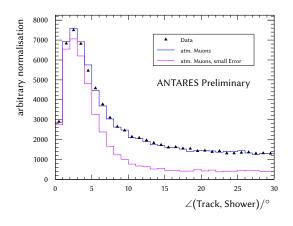
Reconstruction - Likelihood Function


- Likelihood depends on neutrino energy, direction, distance to OM, incident angle
- expected charge q on a PMT described by tabulated PDF
- unhit PMTs and Background rate taken into account

$$\begin{split} \mathscr{L} &= \sum_{i=1}^{N_{\text{selected Hits}}} \log \left\{ P_{q>0}(q_i|E_{\nu},d_i,\phi_i,\alpha_i) + P_{\text{bg}}(q_i) \right\} \\ &+ \sum_{i=1}^{N_{\text{unhit PMTs}}} \log \left\{ P_{q=0}(E_{\nu},d_i,\phi_i) \right\} \end{split}$$

Reconstruction - Performance: Direction & Energy

- position of shower mean reconstructed with accuracy of about 1 m
- $\bullet\,$ median angular error $\xi\approx 3^\circ$ in relevant energy range
- ullet systematic offset in energy of 20 % easily corrected
- ullet energy resolution of 5 %



Reconstruction - Direction Resolution directly from Data

- resolution can be measured on muon-induced showers
- comparing directions as reconstructed by track and shower algorithm (we trust the reconstructed muon direction)
- reconstructed track direction depends only on timing, shower direction only on charge
- shows clear peak at low angles
- confirms angular resolution of $2-3^{\circ}$ as found in MC

Reconstruction - Direction Resolution directly from Data

- resolution can be measured on muon-induced showers
- comparing directions as reconstructed by track and shower algorithm (we trust the reconstructed muon direction)
- reconstructed track direction depends only on timing, shower direction only on charge
- shows clear peak at low angles
- confirms angular resolution of $2-3^{\circ}$ as found in MC

Event Selection

Showers:

lots of cuts to suppress atm. muons - i.a.:

- \bullet containment $\rho < 300 \text{ m}$
- \bullet angular error estimate $< 10^{\circ}$
- up-going: $cos(\vartheta) > -0.1$
- ratio between charge of early and on-time hits

Muons:

same cuts as in last analysis

- quality parameter $\Lambda > -5.2$
- angular error estimate < 1°
- up-going: $\cos(\vartheta) > -0.1$

Data Set

- 1622 days from 2007 to the end of 2013 (185 days of 5-line data not included in shower channel)
- contains 6261 muon track candidates and 156 cascade events (90 % purity)
- $\nu_{ au} o au o \mu/e/hadr$. are taken into account by scaling up $\nu_{\mu} o \mu$ and $\nu_{e} o e$ with respective au branching ratios
- \bullet for E^{-2} flux with 1:1:1 flavour composition, shower channel increases signal event rate by 30 %

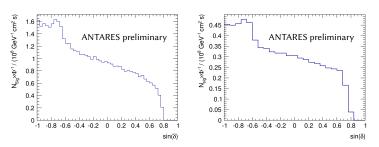


Figure: signal acceptance for Left: the track channel and Right: the shower channel

Point Source Search

- signature of a point source is cluster of events
- distribution of signal around source described by Point-Spread-Function (PSF)
- background rate considered as function of declination
- number of selected hits to further separate between atmospheric background and cosmic signal
- sum over tracks and showers in reasonably large area around hypothesized source

$$\begin{split} \log \mathscr{L}_{\mathsf{s}+\mathsf{b}} &= \sum_{i} \log \left[\mu_{\mathsf{sig}} \times \mathscr{F}(\gamma_{i}) \times \mathscr{N}_{\mathsf{sig}}(\textit{N}_{\mathsf{i}}^{\mathsf{Hits}}) + \mathscr{B}(\delta_{\mathsf{i}}) \times \mathscr{N}_{\mathsf{backg}}(\textit{N}_{\mathsf{i}}^{\mathsf{Hits}}) \right] - \mu_{\mathsf{sig}} \\ & Q = \log \mathscr{L}_{\mathsf{s}+\mathsf{b}} - \log \mathscr{L}_{\mathsf{b}} \end{split}$$

 \mathscr{F} : Point-Spread-Function γ : angle between event and source

 \mathscr{B} : background rate δ : declination

 \mathcal{N} : Number of Hits distribution for Signal / Background

 $Q\,:$ Test Statistics to differentiate between Signal and Background

Ingredients

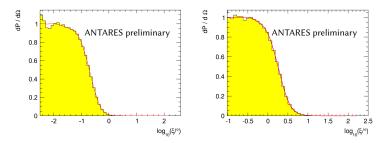
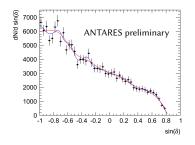
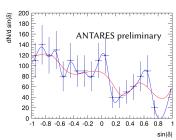
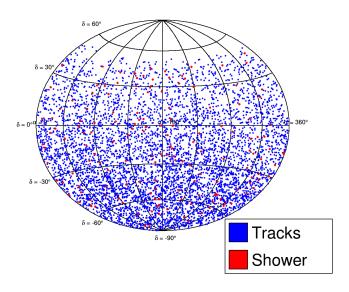
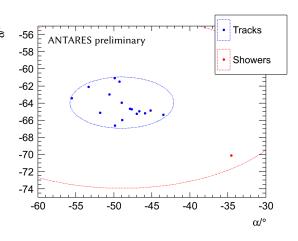




Figure: Top: F - Bottom: B - Left: muons - Right: showers


Search Methods

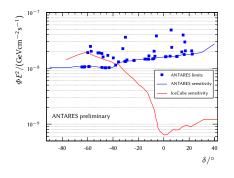
- sensitivities determined with Pseudo Experiments
- background rate (B) from data
- ullet PSF (\mathscr{F}) from Monte Carlo Simulation

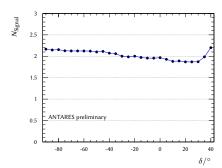

Three different searches presented here:

- ullet Full Sky search: fitting $\mu_{
 m sig}$, $lpha_{
 m sig}$ and $\delta_{
 m sig}$
- ullet Fixed Point search: lpha and δ given by candidate list, fitting only $\mu_{
 m sig}$
- IceCube HESE candidates: using direction from 8 IceCube tracks and trying to fit a cluster within 2° cone

ANTARES tracks + shower skymap

most significant cluster in full sky search

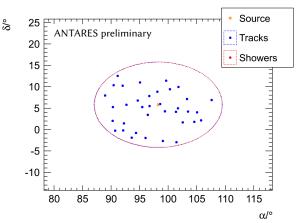



- most significant cluster at similar position as in last analysis: $\alpha = -48.3^{\circ}, \delta = -64.6^{\circ}$ old analysis (tracks only): $\alpha = -46^{\circ}, \delta = -65^{\circ}$
- 16 tracks within 3°, 1 shower within 10°
- N_{Sig} = 5.5 + 0.8 (Tracks + Showers)
- significance: 1.33σ , p-value: 0.185
- old analysis (tracks only): 15 tracks within 3° $N_{\text{Sig}} = 6.7$ 2.17 σ , p-value: 0.029

Point Source Candidate List

Name	$\alpha/^{\circ}$	δ/°	σ	$\Phi^{ ext{limit}}$	∧limit Hits	Name	$\alpha/^{\circ}$	δ/°	σ	$\Phi^{ m limit}$	∧ ^{limit} Hits
HESSJ0632+057	98.24	5.81	0.75	5.0e-08	5.9	HESSJ1837-069	-80.59	-6.95	0.0	1.7e-08	2.1
HESSJ1741-302	-94.75	-30.2	0.75	3.7e-08	5.6	HESSJ1503-582	-133.54	-58.74	0.0	1.1e-08	1.0
HESSJ1023-575	155.83	-57.76	0.49	2.5e-08	5.0	MSH15-52	-131.47	-59.16	0.0	1.1e-08	0.9
3C279	-165.95	-5.79	0.21	3.9e-08	5	HESSJ1837-069	-80.59	-6.95	0.0	1.7e-08	2.1
CirX-1	-129.83	-57.17	0.05	2.1-08	4.1	HESSJ1503-582	-133.54	-58.74	0.0	1.1e-08	1.0
HESSJ1616-508	-116.03	-50.97	0.03	1.9e-08	3.9	MSH15-52	-131.47	-59.16	0.0	1.1e-08	0.9
HESSJ1614-518	-116.42	-51.82	0.03	1.9e-08	3.9	PKS2155-304	-30.28	-30.22	0.0	1.3e-08	1.6
ESO139-G12	-95.59	-59.94	0.02	2e-08	3.9	HESSJ1303-631	-164.23	-63.2	0.0	1.1e-08	0.7
GX339-4	-104.3	-48.79	0.02	1.9e-08	3.8	RGBJ0152+017	28.17	1.79	0.0	1.6e-08	1.9
VERJ0648+152	102.2	15.27	0.02	4.0e-08	4.3	W28	-89.57	-23.34	0.0	1.4e-08	1.4
PKS0537-441	84.71	-44.08	0.01	1.7-08	3.6	Geminga	98.31	17.01	0.0	2.1e-08	2.2
HESSJ1632-478	-111.96	-47.81	0.00	1.6e-08	3.3	H2356-309	-0.22	-30.63	0.0	1.3e-08	1.2
PKS0548-322	87.67	-32.27	0.00	2.3e-08	3.5	Crab	83.63	22.01	0.0	2.1e-08	2.2
RXJ1713.7-3946	-101.75	-39.75	0.00	1.6e-08	3.1	QSO1730-130	-96.7	-13.1	0.0	1.5e-08	1.4
KS0235+164	39.66	16.61	0.0	3.0e-08	3.2	HESSJ1507-622	-133.28	-62.34	0.0	1.1e-08	0.0
QSO2022-077	-53.6	-7.6	0.0	2.1e-08	2.8	RCW86	-139.32	-62.48	0.0	1.1e-08	0.0
MGROJ1908+06	-73.01	6.27	0.0	2.4e-08	2.8	W51C	-69.25	14.19	0.0	2.0e-08	2.1
HESSJ1356-645	-151.0	-64.5	0.0	1.1e-08	2.1	1ES1101-232	165.91	-23.49	0.0	1.4e-08	0.8
PKS 1454-354	-135.64	-35.67	0.0	1.3e-08	2.2	CentaurusA	-158.64	-43.02	0.0	1.0e-08	0.0
Galactic Centre	-93.58	-29.01	0.0	1.4e-08	2.2	SS433	-72.04	4.98	0.0	1.6e-08	1.2
PKS2005-489	-57.63	-48.82	0.0	1.0e-08	1.6	PKS1406-076	-147.8	-7.9	0.0	1.5e-08	0.3
PSRB1259-63	-164.3	-63.83	0.0	1.1e-08	1.5	HESSJ1834-087	-81.31	-8.76	0.0	1.5e-08	0.3
PKS0727-11	112.58	-11.7	0.0	1.7e-08	2.3	HESSJ1912+101	-71.79	10.15	0.0	1.6e-08	1.1
RXJ0852.0-4622	133.0	-46.37	0.0	1.0e-08	1.5	PKS0426-380	67.17	-37.93	0.0	1.1e-08	0.0
PKS 1622-297	-113.5	-29.9	0.0	1.3e-08	2	1ES0347-121	57.35	-11.99	0.0	1.5e-08	0.0
VelaX	128.75	-45.6	0.0	1.0e-08	1.4	PKS1502+106	-133.9	10.52	0.0	1.6e-08	0.4
PKS0454-234	74.27	-23.43	0.0	1.4e-08	2	LS5039	-83.44	-14.83	0.0	1.5e-08	0.0

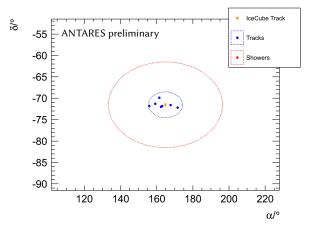
Sensitivity and Candidate Limits



sensitivity down to $1.0\times10^{-8}~{\rm GeV cm^{-2}s^{-1}}$ and flat over broad declination range showers improve sensitivities by about 30 % world-best limits for many (galactic) candidate objects

most significant source in fixed point search

- same source as in last analysis: HESSJ0632+057 $\alpha_{\rm s}=98.24^{\circ}, \delta_{\rm s}=5.81^{\circ}$
- 36 tracks + 0 showers within 10°
- *N*_{Sig}: 1.2 + 0.2 (Tracks + Showers)
- significance: 0.75σ , p-value: 0.456
- old analysis (tracks only): $N_{\rm Sig} = 1.51$ 1.64σ



IceCube Candidate List

IceCube ID	$lpha_{ m fit}/^{\circ}$	$\delta_{ m fit}/^\circ$	$\beta_{\rm IC}/^{\circ}$	$N_{\rm Events}$	σ	N_{Signal} (Tr.+Sh.)
28	164.8	-71.5	1.3	7	0.0	0.0 + 0.0
3	127.9	-31.2	1.4	11	0.0	0.0 + 0.0
8	-177.6	-21.2	1.3	9	0.0	0.0 + 0.0
5	110.6	-0.4	1.2	5	0.0	0.0 + 0.0
18	-14.4	24.8	1.3	5	0.0	0.0 + 0.0
23	-151.3	-13.2	1.9	6	0.0	0.0 + 0.0
37	167.3	20.7	1.2	1	0.0	0.0 + 0.0
13	67.9	40.3	1.2	1	0.0	0.0 + 0.0

most significant cluster in IceCube candidate search

- IceCube Id: 28
- $\alpha_{\rm IC} = 164.8^{\circ}, \delta_{\rm IC} = -71.5^{\circ},$ $\beta_{\rm IC} = 1.3^{\circ}$
- 7 tracks within 3°, 0 showers within 10°
- N_{Sig}: 0.0 + 0.0 (Tracks + Showers)
- ullet significance: 0σ

Conclusion

- shower reconstruction algorithm for ANTARES has been developed
- achieves direction resolution of 3° and energy resolution of 5 %
- → water allows pointing with showers
- applied to new point source search, combining tracks and showers
- included data from 2013 in new analysis
- performed three different search methods: full sky, fixed source candidate list, IceCube HESE candidate list
- no significant clusters have been found
- ullet same most significant cluster in full sky search but with reduced significance: p=18.5~%
- same most significant source (HESSJ0632+057) also with reduced significance: p=45.6~%
- search for point sources near IC tracks shows no excess
- ANTARES provides world's best limits for several galactic sources

Outlook

- extended sources
- different spectral indices
- write paper, write thesis
- shower reconstruction ready to be applied to any other analyses

Backup

longitudinal Emission Spectrum of em-Showers

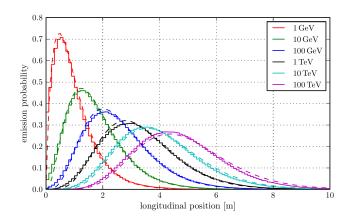


Figure: longitudinal Profile of electromagnetic shower in water

angular Emission Spectrum of em-Showers

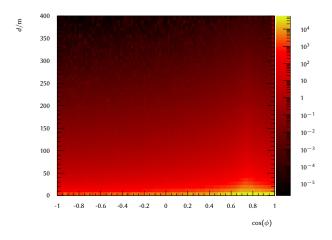


Figure : Expected number of photons for a 1 TeV neutrino (ν_e , charged current interaction) with dependence on the emission angle ϕ from the neutrino direction and the distance d from the shower's position of mean intensity.

Reconstruction - Performance: Position

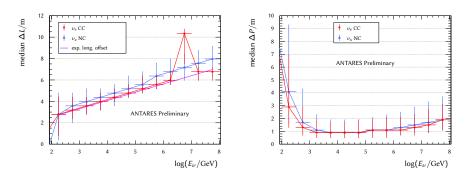


Figure: Performance of the shower position reconstruction, red for electromagnetic showers, blue for hadronic showers, the purple line is the mean of the light emission spectrum for em-showers – **Left**: The distance between the position of the neutrino interaction vertex and the reconstructed shower position along the neutrino axis. **Right**: The distance of the reconstructed shower position perpendicular to the neutrino axis.

Reconstruction - Performance: Direction & Energy

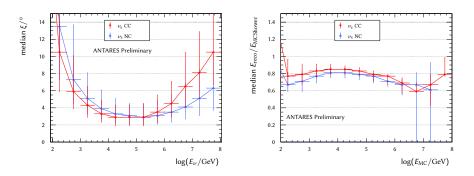
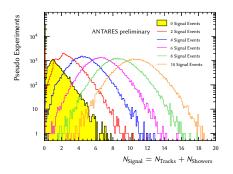



Figure: Performance of the shower energy-direction reconstruction, red for electromagnetic showers, blue for hadronic showers – **Left:** The angle between the directions of the reconstructed shower and the Monte Carlo neutrino. **Right:** The ratio between the reconstructed energy and the Monte Carlo shower energy.

Fit Performance

- injected signal can be reasonably well fitted
- the source position can be safely found when 4 or more events are injected

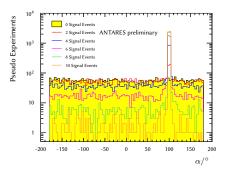


Figure: Pseudo experiments with various numbers of injected signal events **Left:** Fitted number of signal events in fixed point search – **Right:** Fitted right ascension in full sky search.

Discovery Potential

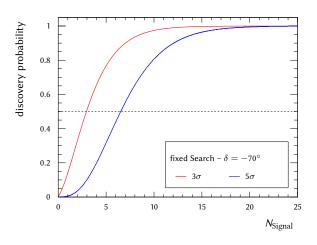


Figure : probability to find a source with 3 / 5 σ depending on the number of signal events with the fixed point search.

Discovery Potential

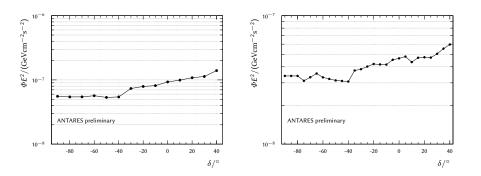


Figure : The flux necessary for a 50 % probability for a 5σ discovery in the **Left**: full sky and **Right**: fixed point search.