Progress in the Development of Radio Cherenkov Neutrino Detectors

Steve Barwick UC Irvine, USA ICRC, Aug 2015

Radio Detectors: The Askaryan Effect

- EM, hadronic cascade in in dense, dielectric media (ice)
- Coherent radio Cherenkov radiation (P ~ E^2) if λ > Moliere radius

Typical Dimensions: $L \sim 10 \text{ m}$ $R_{\text{moliere}} \sim 10 \text{ cm}$

SLAC Tests confirmed expectation in ice 150 Amplitude and frequency 100 Ε content verified to 20% E (V/m) at 1 50 0 -50 **Coherence** observed -100 Freq. dependence of width of C-cone 2 5 -2 0 3 4 6 time, ns ANITA Coll., PRL (2007)

G. Askaryan

A. G. Vieregg

Challenges in Polar Climates

Stormy Weather

Not always soft Landing

Why go to Polar Regions?

- Radio Quiet, but
 - Noisy near bases and/or experiments
 - Noise from satellites in case of ANITA-III
- Thick cold, RF transparent, (free) material
- Ice provides a dense target for neutrinos
- Surprisingly good infrastructure

TeraTon Detectors at low cost (~ \$10M US in hardware)

Field Attenuation Length in ice

Similar numbers for Greenland at 75MHz S. Wissel, et al. (ICRC -2015)

Shorter, due to warmer ice Reflectivity ~ perfect mirror

ANITA-3 launched Dec 2014

- Stayed aloft for 22 days, and more sensitive to CRs and neutrinos than previous missions.
- Unexpected satellite noise reduced efficiency
- Dual balloon tests

ANITA-III: 2014-2015

- More antennas (now 40 -> 48)
- Better antennas in 200-300MHz
- Digitize longer traces
- Better trigger and event priority
- Lower noise front-end RF system

→ Potentially factor of 2-3 improvement in neutrino sensitivity compared to ANITA-II (S. Wissel, ICRC-2015)

Detector Concepts

1 station in array of 36 x36, 1km spacing Nind generator Communicatio ICE antenna SHELF **3** solar panels Electronics Satellite links box 0 SEA WATER Depth: 200 m 8 under-ice Most neutrinos -O *surface antennas are not shown antennas pass through ice without hitting atoms.

ication Calibration Calibration Antenna Calibration Antenna Calibration Antenna

1 station of 37

Downhole instrumenta

Power and

20m ARA P. Allison, et al, Astropart. Phys. 35 (2012)

S. Barwick, et al., IEEE Trans. Nucl Sci. (2015)

ARIANNA

Effective Volumes ($V_{eff}^*\Omega$) (combines volume and viewing)

Radio techniques provide independent measurement and complement IceCube:

Radio better angular resol. IC better energy resolution, (rough generalization)

New Ideas for improvement

Encouraged by IceCube events, especially above 10⁶ GeV, the collaborations are working on methods to improve low energy response of the detectors.

GNO: Phased antenna on a string to beam-form trigger. Shown: Phasing 16 antenna on 10 strings. Suggested possibility of phasing for 400 antenna strings.

K. Bechtol et al. (ICRC-1297)

GNO Testing of Phased Arrays

S. Wissel, ICRC-828

Pilot Arrays

Completed in Dec 2014

ARIANNA HRA

ARA

HRA observes galaxy and sun

A. Nelles (ICRC-822)

Large Solar Radio Burst on Dec 22, 2014

Most power at 85-120MHz

Galactic emission

Modeled amplitude is correct, but periodicity needs additional study

HRA Trigger Rates

All stations ran well from commissioning in Dec 2014 to April, 2015 (Austral Sunset)

S. Barwick, ICRC-820

Station livetime

A. Nelles ICRC-822

Site B station, with battery, achieves ~92% livetime, 8% loss from data transmission Site C station, gaps due to un-transferred data. Requires sun >2-5° above horizon

Angular Reconstruction from Timing

ARA Pulser studies

ARIANNA Bounce studies

Both detectors show ~1 deg resolution for direction of radio pulse

Searching for Neutrinos with HRA

- No v events from any of the HRA stations from 4 months of operation
- ARA reports results from 10 months O'Murchadha (ICRC-1293)

Flux Limits

Veff* Ω is only one important factor in determining the final sensitivity

$$E^{2} \Phi \sim \frac{E \lambda_{v}}{\varepsilon (V_{eff} \Omega) t_{live}}$$

Where

 ϵ is analysis efficiency relative to trigger level (<1)

t_{live} is livetime (up-time - operational losses)

Solid progress – meeting goals

	Analysis Efficiency, ε	t _{live} (fraction of year)	
		Max	Current up-time (operational losses)
ARIANNA HRA	0.85 (10 ⁹ GeV)	0.62*	0.57(0.9) = 0.51
ARA (2 of 3 stations)	0.6 (10 ⁹ GeV)	1.0**	0.75
ANITA	0.61	0.1	varies with flight
GNO	-	0.83*	-

* Solar only ** power from SP Station

Refs S.W. Barwick et al., Astropart. J, 70(2015)12 & ICRC-820 Aartsen, M.G, et al., O'Murchadha, ICRC-1293 P. Gorham, et al., Phys. Rev. D82 (2010) 022004 S. Wissel et al., ICRC-828

Neutrino Flux Limits from Pilot Programs

HRA = 7 stations in operation for 4 months, since commissioning ARA = 2 stations in operation for 10 months

• Created from collision of CR and CMB photons if $E_{CR}/A > ~5x10^{10} \text{ GeV}$

Calculations depend on:

- 1. Composition [p, mix, Fe]
- 2. Evolution of sources
- 3. Highest energy, E_{max}
- 4. Injection Spectrum
- 5. End of Gal. CR

• Experimental Limits

Calculations depend on:

- 1. Composition [p, mix, Fe]
- 2. Evolution of sources
- 3. Highest energy, E_{max}
- 4. Injection Spectrum
- 5. End of Gal. CR

ARIANNA and ARA37 3 year sensitivities

ARIANNA and ARA37 10 year sensitivities

Commentary

- IceCube neutrinos, especially those above 10¹⁵ eV provide strong incentive to probe to even higher energies with larger detectors.
- Pilot programs of next generation of EHE neutrino radio-based detectors are completed (e.g., ARIANNA-HRA), and teams are gaining experience with sustained operation. Plans for the next phase in construction are coalescing.
- Optimized for EeV (though with capability to 10¹⁶ eV, and perhaps 10¹⁵ eV with phased arrays).

EHE v detectors: Comments

EHE neutrino detectors:

- Contribute to ongoing quest to understand EHE CRs
 - Neutrino measurements provide independent confirmation of GZK mechanism
 - Combined with CR and photon measurements, can help to constrain source class, evolution, E_{max}, and composition of CR
- Search for new physics
 - Beam of EeV neutrinos can uncover new physics at ~5-10 x E_{cm} of LHC through cross-section and spectral modifications
- Search for new sources:
 - EeV neutrinos must point back to sources and direction can be measured with good precision (and current procedures can be improved).

Huge upside at modest cost, deployment time, and risk

Shown: (Left to right) Joulien Tatar, Chris Persichilli, James Walker, Corey Reed

EVA: ExaVolt Antenna

- Idea: Turn an entire NASA super pressure balloon into the antenna
- Currently: 3 year NASA grant for developing 1/5 scale engineering test, full RF + float test
- Full Balloon: similar sensitivity to full, 3-year of ground-based arrays

Gorham et al. (2011)

