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Introduction
> Cosmic rays known for 100 years.
> Make-up: Mainly protons, nuclei.
> Energy spectrum: ∼smooth power law.
> Origin, composition not fully understood.

Direct detection experiments[1]:
> Balloons/space borne detectors.
> Detection area ∼1 m2.
> Good at small Z, MeV to TeV energies.

Indirect detection — EAS arrays[2, 3]:
> Detect air shower on ground.
> Detection area ∼ 1012 m2.
> Best at energies of 1013 eV and above.

Indirect detection — IACTs[4]:
> Detect Cherenkov light from air showers
> Detection area ∼ 104 m2.
> Intermediate energies (TeV range).

Figure 1: Energy spectra of various elements
in cosmic rays, measured by different experiments
over a large energy range, from [5].

Imaging Air Showers & Direct Cherenkov Technique

Figure 2: Cherenkov light pool, adapted
from [4].

Imaging of Air Showers:
> Charged particles → Cherenkov light.
> Light pool: few 100 m radius at ground.
> Extension in camera: ∼1◦.
> Reconstruct energy, direction, primary particle

from size, shape, orientation.
> Telescope arrays → stereoscopy.
> γ-ray astronomy, large background of CRs.

Direct Cherenkov Technique[4, 6]
> Charged primary particles: direct Cherenkov

(DC) light before first interaction.
> Very concentrated in camera.
> DC Intensity ∼ Z2 → separation of heavy and

light nuclei.
> Combine IACT data on all targets.
> Complementary to EAS, direct detection.

The VERITAS instrument
> Very Energetic Radiation Imaging Telescope Array System [7].
> Array of four imaging atmospheric Cherenkov telescopes at the

Fred Lawrence Whipple Observatory (FLWO) in southern Arizona
(31 40N, 110 57W, 1.3km a.s.l.).

> Field of view 3.5◦ per camera, consisting of 499 pixels each.
Figure 3: One of the
VERITAS cameras.

Template Likelihood Reconstruction

ph
ot

oe
le

ct
on

s 
pe

r 
pi

xe
l

1

10

210

310

410

camera x [deg]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

ca
m

er
a 

y 
[d

eg
]

0

0.1

0.2

0.3

0.4

0.5

DC light
shower light

?

Figure 4: Template: Iron shower, E = 30 TeV,
D =80 m (detector to shower core), H = 33 km.
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Figure 5: Template: Iron shower, E = 80 TeV,
D =80 m, H = 33 km.

Probability distribution of signal, given
> direction XS, YS,
> energy E of the primary particle,
> height of first interaction H

> position of shower core XP, YP.
> uncertainty of pixel gain
> pedestal variance.

> Likelihood optimization to estimate pa-
rameters for a given shower by fitting
camera images to model [8, 9].

> Goodness of fit: background separation.
> CR analysis: include shower-to-shower

fluctuations in likelihood. [10].

Performance

> Reconstruction tested on simulated iron
showers.

> Select very bright showers only, no cut on
goodness of fit.

> Reconstruction works well, safe energy
threshold ∼ 101.5 TeV ≈ 30 TeV.

> Energy bias (Erec/Etrue− 1) flat above en-
ergy threshold.

> Offset-dependent energy bias, need to cor-
rect for that.

> Energy resolution and angular resolution
improved compared to geometrical recon-
struction.

> Angular resolution still larger than pixel di-
ameter below 100 TeV.
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Figure 6: Energy bias for showers from zenith, differ-
ent offsets from the camera center.
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Figure 7: Energy resolution for showers from
zenith, different offsets from the camera center.
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Figure 8: Angular resolution for showers from
zenith, different offsets from the camera center.

Conclusions
> Have adapted template likelihood reconstruction to reconstruct iron-induced showers.
> Reconstruction works well for iron-induced showers with energies of ∼30 TeV –
∼300 TeV.

> Future plans: Use goodness-of-fit to separate iron-induced showers from background
(showers induced by protons and light nuclei).

> Eventually: Spectrum of cosmic ray iron in the TeV range.
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