

Multi TeV Cosmic-Ray Electrons

Multi-TeV region largely unexplored, where the potential is greatest for studying local cosmic accelerators (d<1 kpc)

Difficulty of measurements due to low high energy electron flux and large proton background

Cosmic Ray Electron Synchrotron Telescope

High energy electron (> TeV) detection with synchrotron radiation

- Proposed by Prilutskii (1972) and Stephens & Balasubrahmanyan (1983)
 - ◆ Searching for co-linear, simultenous arrangement of X-ray hits in the detector (energy range between 30 keV to few tens of MeV)
- Advantages of the method
 - ◆ Increase of the effective area of the instrument
 - ◆ Proton does not produce synchrotron radiation
- Challenges
 - Rejection of large background from interactions of charge particles and gamma-rays in the atmosphere

CREST Detector

Crystal array

- □ 1024 shielded BaF₂ crystals with 2" PMT readout
- □ 1 nsec timing resolution, 12% energy resolution at 511 keV

Veto paddles

>99% hermetic thin plastic scintillator array with embedded wavelength shifting fiber readout

CREST Flight

Long duration balloon flight at Antarctica during 2011/2012 season

- □ Total ~ 10 days of flight time
 - ◆ Launched on December 25th, 2011
 - ◆ Termination on January 5th, 2012

CREST Flight (2)

Average grammage: 7.58 g/cm²

Three configurations during the flight

Calibration during the flight showed stable timing and energy resolution

Good events

Accidental coincidence

Accidental coincidence

X-ray Multiple scattering

Accidental coincidence
X-ray Multiple scattering

Interaction inside detector

Accidental coincidence
X-ray Multiple scattering

Interaction inside detector
Bremsstrahlung from primary electron

Accidental coincidence
X-ray Multiple scattering

Interaction inside detector

Bremsstrahlung from primary electron

Primary electron passing through detector

Accidental coincidence
X-ray Multiple scattering

Bremsstrahlung from primary electron
Primary electron passing through detector
Horizontally passing through charged particle

Simulation

To understand background events, huge amount of simulation data processed

- 1.2 M CPU-hours to simulate 50 days of background events
- Background includes primary and secondary cosmic rays
 - ◆ Different altitudes, energy range between 30 keV and 100 GeV
 - ◆ Two background models (modified GLAST model & QARM model)

Full Earth-scale simulation for signals

- Full simulation of flight trajectory (altitude, latitude, longitude)
 - Magnetic field: World Magnetic Model (2010 model)
 - ◆ Atmosphere : NRLMSISE-01 Model
- Results fed to GEANT4 detector model

Analysis

Instrumental signature of a 'golden' synchrotron event

- A set of co-linear, simultaneous crystal hits with no activity in the veto system
 - ◆ Events with large extension with isolated hit clusters are more likely to be synchrotron-like events
- Very stringent cuts needed to remove background events
 - ◆ For each cut, data/MC consistency verified

Table 1: Event Selection Summary

Event Selection	Rate Hz (Data)	Rate Hz (MC)	20 TeV Electron Selection Eff.
raw (hardware trigger rate)	3055	3177	1.0
no veto activity	277	181	0.14
# clusters > 3	8.4	7.4	0.056
event extent > 75 cm	3.2	2.7	0.86
largest inter-cluster gap > 40 cm	2.2	1.4	0.99
hit time vs position $\chi^2 < 5$	1.9	1.3	0.98
crystal x vs y fit χ^2 <5	0.064	0.04	0.30

Event display of a signal-like event from the flight

Event extent comparison between data and MC

Results

Final signal/background discriminator: Using propagation velocity of hits

- Signal: peaks at zero
- Background: peaks at speed of light

Preliminary upper limit

□ With E⁻³ electron spectrum: Flux < 7.11×10^{-3} m⁻² sr⁻¹ s⁻¹ (with 90% confidence level for E > 15 TeV)

Discussion

CREST signal simulation demonstrates that synchrotron method can provide large effective area

However, high background levels compelled strict cuts at the expense of signal efficiency

- Correlated hits from interacting gammas were particularly hard to reject
- Small residual veto inefficiency during the flight
- Current limit is not constraining

- Success of method depends on high Q-factor cuts
 - ◆ Some advantages to going to space
 - Reduced secondary particle intensity.
 - Albedo gamma-rays will still be a challenge
- Instrumentation improvements
 - ◆ Better timing resolution with larger detector
 - ◆ Smart & even more hermetic veto system

Table 2: Background event type fraction

Background event type	Fraction of total rate after event selection	
Upward secondary gammas	0.3	
Downward secondary gamma	0.25	
Primary charged particle	0.25	
Neutrons	0.07	
Low-energy electron	0.055	
Secondary charged particles	0.045	
Primary gamma	0.03	

Summary

CREST was designed to measure very high energy electrons with geo-synchrotron radiations on balloon platform.

CREST detector achieved 1 nsec timing resolution with 1:1000 dynamic range of X-ray energy estimation to study the simultaneous synchrotron radiations originated from high energy electrons.

CREST had a 10-days of scientific flight at Antarctica in 2011/2012.

Background events were too large to make the method work effectively as a balloon experiment.

- Extensive simulation studies have been carried out to understand the source of background and signal selection efficiency.
- Preliminary upper limit for E>15TeV is presented.