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GRB Science

Gamma-ray bursts (GRBs) are intense gamma-ray flashes believed to
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originate from the collapse of massive stars and the merger of compact

object binaries [1]. The basic theory of GRB emission is the same for

both progenitors: a black hole powering a highly relativistic Jet [2][3].

Measurements of the highest
energy GRB photons are key to vevTRON ST
developing emission models et JOE

because they provide estimates

of the bulk Lorentz factor in the e

region where gamma-rays are
produced [4]. They can also
constrain the density of extra- i
galactic background light [5] [

and possible

Lorentz invariance [6].
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FORMATION OF A GAMMA-RAY BURST could begin

either with the merger of two neutron stars or

with the collapse of a massive star. Both these

events create a black hole with a disk of material

around it. The hole-disk system, in turn, pumps

out a jet of material at close to the speed of light.
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violations of Figure 1 - Theoretical fireball model

The HAWC Observatory

for GRB emission [7]

The HAWC Observatory is an array of 300 water tanks located at 19° N

at an altitude of 4100m. Each tank is instrumented with 4 upward facing

PMTs that record Cherenkov light from gamma- and cosmic-ray air

shower particles as they arrive at ground level. Showers are

reconstructed with an angular resolution better than 1" [8].

The main advantages of HAWC for detecting high energy GRB photons
are its large effective area (>100x the size of Fermi at energies >100 GeV)

and its wide (2 sr) field of view, which eliminates the need for pointing.
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Background Estimation

We estimate the background in each bin by integrating all triggered showers in
a map of declination versus hour angle over a 1.5 hour period. We normalize
this map to one and smooth it into our 2.3 x 2.3" spatial search bins to obtain

the fraction of showers entering each bin. This gives:
Nea(bin) = (integrated map bin) x (trigger rate) x (search duration)

The observed counts for this expectation follow a Poisson distribution.
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Figure 4 - (Left) Background integrated for 1.5 hours and normalized to
one. (Right) Observed counts near zenith for 1 day of 250 tank data.

- Speedup Techniques
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Figure 5 - Probability distributions for searching every bin (black),
skipping bins with < 2 counts (blue), and skipping bins adjacent to
P = 10-2 (red). Searching every bin correctly produces a line of slope
1. Both methods for skipping bin evaluation preserve rare
probabilities where we expect signal.

All-Sky GRB Search Sensitivity

For the 1 second search duration we take:

(8.64x10° temporal trials) X (1.33x10°6 spatial trials)

over the course of 1 day. This requires only a 2x higher flux compared to the
flux for a 50 discovery in single trial if we treat each trial independently. This
gives a sensitivity of ~ 4x106 erg cm=2 s1 at 10 GeV assuming a spectrum
dN/dE « E-2, a high energy cutoff of 100 GeV, and the detector response in [9].
A burst like GRB090510 is detectable under these assumptions. This search

A||-Sky GRB Search Method should also be sensitive to other transients with

We continuously
field of view In

over three durations: 0.1, 1, and 10 seconds. We
shift each duration forward by 10% its width and 40

search the HAWC observatory’s

near-real time for GRB

similar timescales and spectra, such as evaporating
primordial black holes [10].
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