

ROBAST

Development of a Non-Sequential Ray-Tracing Simulation Library and its Applications in the Cherenkov Telescope Array

Akira Okumura ^{a, b}, Koji Noda ^c, Cameron Rulten ^d for the CTA Consortium

^a Solar-Terrestrial Environment Laboratory, Nagoya University
^b Max-Planck-Institut für Kernphysik
^c Max-Planck-Institut für Physik
^d Department of Physics and Astronomy, University of Minnesota

ICRC 2015 in the Hague Aug 3, 2015

Optics in Gamma-Ray and Cosmic-Ray Telescopes

Ray-Tracing Simulations

- Many ray-tracing programs already exist
 - ▶ Geant4 Optical Process ... a bit complicated for C++ beginners, limited geometry
 - Zemax ... wide range of functionality, but a commercial license and Windows only
 - ▶ sim_telarray ... excellent for full MC of Cherenkov telescopes (also used in CTA), but less flexible than others
- In addition, many PhD students developed their own "home-brew" software

Geometrical optics

Quite easy mathematics for your students!

However, developing reliable and useful software is a tough work... Please do **NOT** ask them to write a new simulator from scratch!

ROot-BAsed Simulator for ray Tracing (ROBAST)

http://sourceforge.net/projects/robast/

- I wrote yet another home-brew library, ROBAST, myself
- Utilizes the ROOT geometry library for photon tracking and geometry construction
- Useful geometry types for CR telescopes
 - Aspherical lens/mirror
 - Winston cone
- Non-sequential ray-tracing technique
- Open-source C++ project
- C++/ROOT/Python
- OpenGL view
- Direct analysis in ROOT
- ~20 users in CTA, and several in other experiments

ROot-BAsed Simulator for ray Tracing (ROBAST)

The First Complex ROBAST Application

- ROBAST was initially developed by A.O. for the Ashra project in 2007
- Released as an open-source project for CTA simulations in 2010
- Can build complex telescope geometry with ROOT and ROBAST classes
 - Segmented mirrors
 - Aspherical lenses
 - Telescope frames
- Four optics types
 - Mirror
 - Lens
 - Focal surface
 - Obscuration

Cross-Check with Zemax and sim_telarray

- Performed cross-check simulations with other programs (Zemax, sim_telarray, and some others) for several optical systems
- Consistent results have verified the ROBAST calculation

to be submitted to Astropart. Phys.

The Cherenkov Telescope Array (CTA)

Diverse Optics Designs in CTA

ROBAST Applications in CTA

- ROBAST is currently used in three of the six telescope designs for PSF simulations, tolerance analysis, shadowing evaluation
- Exchanged simulation code and experience among the sub projects, enabling us to save time and human power as well as to improve the simulation quality

Large-Sized Telescope (LST)

NB: Misalignment of the segmented mirrors or any deviation in the mirror shapes have not been taken into account.

- Consists of 198 spherical segmented mirrors to form a large parabola (23-m diameter, 28-m focal length)
- In addition to the comatic aberration, small structure made by segmented mirrors can be seen
- Similar simulations for Davies–Cotton telescopes can be easily performed as well

Schwarzschild-Couder Medium-Sized Telescope (SC-MST)

in the mirror shapes have not been taken into account.

- Proposed as an extension of Davies–Cotton MST array
- Aspherical primary (9.7 m) and secondary (5.4 m) mirrors with 72 facets
- Non-sequential ray tracing is indispensable to simulate shadowing and vignetting by the telescope masts and trusses

Gamma Cherenkov Telescope (One of Small-Sized Telescope Designs)

NB: Misalignment of the segmented mirrors or any deviation in the mirror shapes have not been taken into account.

- Aspherical primary (4 m) and secondary (2 m) mirrors with less numbers of segmented mirrors and telescope masts and trusses
- Small structures and shadows made by segmented mirrors and telescope masts are visible
- Verifying that the complex telescope geometries were successfully built and simulated by ROBAST

Simulation of a Hexagonal Light Concentrator

- ROBAST is currently used for the development of the LST light concentrators
- Non-sequential ray-tracing functionality and dedicated geometry classes for Winston cones and Bézier-curve cones make the simulation very easy
- Please also see my poster (Poster 3 GA, Tue & Wed)

Summary

- ► We have developed a C++ library, **ROBAST**, for ray-tracing simulations of CR telescopes
- Equipped with most functionalities required for CR telescopes
- Verified by comparisons with other programs
- Actively used in the Cherenkov Telescope Array for simulations of optical systems and light concentrators
- New users and CR projects are very welcome!