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high energy neutrinos 
of cosmic origin

IceCube neutrino detector

3-year data:
excess of 37 neutrinos
above background 
(>5.7 sigma) at 
3.1013 to 2.1015 eV
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ν νE dN / dE (0.95 ± 0.3)×10  GeV cm  s  sr Aartsen et al. 2014
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neutrino production

in cosmos is possible via 

interactions 

and decay chains

- no correlation with any types of astrophysical objects was found  

- Galactic sources may account only for a minority of events

- cosmogenic neutrino production is inefficient

- can be produced in extragalactic sources of UHE cosmic rays

Waxman-Bahcal bound? 

pγ, pp

 , 



_
+ + + +

μ e μ

ν p

π μ ν , μ e ν ν

E  0.05×E

cutoff
at 2 PeV

spectrum of high-energy astrophysical neutrinos E2xN



Glashow resonance



The most plausible mechanism pp interactions of 

high energy protons

Neronov, Semikoz 2014

pp→π+ π-π0 →

νe+νe+2νμ+2νμ+2γ+e+

+e-

- -

Hard proton spectrum       

(~ Е-2)   and cut-off at

Е~1017 eV



Acceleration in SNRs

Supernova remnants (SNRs) are the principal source of 

cosmic rays in the Galaxy up to “knee” energy ~3 PeV

Particles can be accelerated to higher energies 

in some rare SNRs produced by IIb, IIn

supernovae

Supernovae IIn ~ 1-5% of core collapse supernovae. 

Dense stellar wind dM/dt=0.001-0.1 MS per year –

favorable conditions for particle acceleration and 

neutrino generation. Gamma-rays, neutrinos, 

nonthermal X-rays and radiowaves from nearest IIn 

supernova can be detected if effective DSA operates 

there (Murase et al. 2011, Kats et al.  2011)



Diffusive Shock Acceleration
Krymsky 1977; Bell 1978

Very attractive feature: power-law spectrum of 
particles accelerated, =(+2)/(-1), where  is the 
shock compression ratio, for strong shocks =4 and =2

Maximum energy for SN:    D0.1ushRsh 

3·1027 cm2/s<Dgal

Diffusion coefficient should be small in 
the vicinity of SN shock
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In the Bohm limit D=DB=crg/3 and for 
interstellar magnetic field



“Knee” energies for SNRs in different 

circumstellar  media (Bohm diffusion in the 

amplified magnetic field)
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Uniform medium 

Stellar wind

SNRs of IIP, IIb, IIn supernovae

SNRs of Ia supernovae 

quasi-parallel shocks, nonresonant instability (Bell 2004)     

10 times lower energies

higher for oblique 

shocks



Estimate of neutrino flux from IIn supernova 

in the Universe
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Numerical model of nonlinear diffusive shock 

acceleration
(natural development of existing models of Berezhko et al. (1994-

2006), Kang & Jones 2006)
Spherically 

symmetric HD 

equations + CR 

transport equation



Spectra of accelerated particles and pp – neutrinos 

produced during 30 years after IIn supernova 

explosion

ESN=1052 erg

Mej=10 MS

Mass loss rate

dM/dt=10-2

MS per year

Stellar wind speed

uw=100 km/s

25% of explosion energy goes into accelerated particles

parameters from 

Moriya et al. 

2014



Fluxes expected from IIn 

supernova D=1Mpc

X-rays

γ-rays

neutrinos

radio



Background spectrum of astrophysical 

neutrinos
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Dependence of supernova rate 

and star formation rate on z

Hopkings & Beacom 

2006

Dahlen et al. 2012



Neutrino spectrum 

produced by IIn 

supernovae

10-6 (1+z)3.3 Mpc-3 per 

year at z<1 - 1% of 

core collapse SNe



solid line - calculated extragalactic proton background produced 
by SNIIn (without possible magnetic horizon effect);
data on cosmic ray protons and nuclei from Apel et al 2013

protons



Correlations of IIn SNe and  

IceCube neutrinos
1. No correlations with 8 track  events   (expected number 0.3)

2. ~5 correlations with 28  shower events (expected number 1)

Probably coincident  

The arrival direction  of PeV neutrino 20 is within 5 degrees 

from IIn SN 1978K – the nearest  IIn supernova in the galaxy 

NGC 1313  at D=4Mpc

The arrival direction  of PeV neutrino 35 is within 10 

degrees from IIn SN 1996cr – the nearest  IIn 

supernova in the Circinus galaxy at D=4Mpc

These supernovae were detected in X-rays, radio and 

optics. Circinus galaxy is the source of GeV gamma-rays 

(Hayashida et al. 2013). 



Conclusions

1. Supernovae IIn can be the sources of high energy 
neutrinos. The main contribution comes from z~1.

2. Maximum energies of accelerated protons can reach 
1017 eV. This is related with high density of 
circumstellar medium. 

3. IIn supernova can give a significant contribution to the 
observed CR spectrum.

4. Nonthermal X-rays, gamma-rays and radiowaves from 
nearest IIn supernovae can be detected.  

5. Further IceCube operation can detect the correlation 
between arrival directions of IceCube  track events  
and IIn supernovae. 


