Speaker
Juan Carlos Diaz Velez
(University of Wisconsin-Madison)
Description
During the past two decades, experiments in both the Northern and Southern hemispheres have observed a small but measurable energy-dependent sidereal anisotropy in the arrival direction distribution of galactic cosmic rays. The relative amplitude of the anisotropy is $10^{−4} - 10^{−3}$. However, each of these individual measurements is restricted by limited sky coverage, and so the pseudo-power spectrum of the anisotropy obtained from any one measurement displays a systematic correlation between different multipole modes $C_\ell$. To address this issue, we present the current state of a joint analysis of the anisotropy on all angular scales using cosmic-ray data from the IceCube Neutrino Observatory located at the South Pole (90° S) and the High-Altitude Water Cherenkov (HAWC) Observatory located at Sierra Negra, Mexico (19° N). We present a combined skymap and an all-sky power spectrum in the overlapping energy range of the two experiments at ~10 TeV. We describe the methods used to combine the IceCube and HAWC data, address the individual detector systematics and study the region of overlapping field of view between the two observatories.
Collaboration | IceCube |
---|---|
Registration number following "ICRC2015-I/" | 997 |
Primary authors
Daniel Fiorino
(University of Wisconsin-Madison)
Juan Carlos Diaz Velez
(University of Wisconsin-Madison)