

High Energy Astrophysical Neutrino Flux Characteristics for Neutrino-induced Cascades

(using IC79 and IC86-String IceCube configurations)

Hans Niederhausen

Stony Brook University

Mariola Lesiak-Bzdak

Stony Brook University

Achim Stoessl

DESY Zeuthen

for the IceCube Collaboration

Outline

Introduction

Event Selection

Analysis Method

Results

Comparison with other Results

Summary

Bedrock

Designed to detect Cherenkov Light (e, μ, τ)

Infer neutrino properties from **photon arrival time distributions** in each optical module (DOM)

from Northern Sky

ICn := IceCube configuration with n strings

Event Signatures in IceCube

Cascades

electromagnetic and hadronic particle showers from:

CC: $v_e(v_\tau) + N \rightarrow e(\tau) + hadrons$

NC: $v_e(v_\mu, v_\tau) + N \rightarrow v_e(v_\mu, v_\tau) + hadrons$

- point-like light emission
- all-sky sensitivity
- angular resolution ~15°
- very good energy resolution
 - ~15% contained cascades
 - ~30% partially contained cascades
- \rightarrow ideal for spectral characterization of astrophysical v-flux ($v_e + v_{\tau}$)

Event Signatures in IceCube

through-going tracks

- from through-going muons
- e.g. from v_{μ} CC interactions
- angular resolution < 1°
- energy resolution of 0.3 in log₁₀E_u
- restricted to northern sky

hybrid events

ν_τ double bang (* not yet observed)

starting tracks (cascade + track)

- requires outer-layer veto technique
- from v_{μ} CC interactions

"starting events" := starting tracks + contained cascades

√ this work IC79+IC86-2011: require cascade event topology

√ sensitive to

$$v_e + v_{\tau}$$

background stems from atmosphere only!

muons: produced in cosmic ray air showers **neutrinos:** produced in the same showers

conventional v: decay of kaons, pions v_{μ} dominated (relevant energies)

[M. Honda et al., PRD75, 043006, 2007]

prompt v: decay of heavier mesons
 (charm), produces all flavors equally
[R. Enberg et al., PRD78,043005,2008 + JHEP06,110,2015]

+ corrections for CR knee and atmospheric neutrino self-veto effects

similar searches for extraterrestrial cascades:

IceCube IC22 PRD84 072001 (2011) IceCube IC40 PRD89 102001 (2014) IceCube IC59 Proc. of 33rd ICRC, arXiv:1309.7003 (2013)

use 2 years of data (May 2010 – May 2012) exploit two cascade categories (defined by vertex position w.r.t instrumented volume)

- fully contained cascades
- partially contained cascades

developed independent event selection (no outer-layer veto used) cuts on cascade topology variables

backgrund rejection using full MC
extensive air shower simulation
→ computationally extensive

✓ obtained sufficient background simulation at relevant energies

optimization performed for fully contained cascades and partially contained cascades separately

For example "**DelayTime**": delay of first observed photon with respect to expected time of arrival assuming direct propagation from reconstructed cascade vertex (causality!)

✓ MC describes data well (early cut level, background dominated)

after all cuts:

partially contained cascades increase A_{eff} by up to x2 (E>100 TeV)

 ν_{e} and ν_{τ} effective areas similar

but v_{μ} effective area small Av_{μ} : ($Av_{e} + Av_{\tau}$) ~ 1 : 6

 \rightarrow suppressed contribution from atm. v_{μ} background

after all cuts

- √ 172 Cascades found (E >10 TeV)

 (including 20 partially contained E > 35 TeV)
- √ 60% (75% above 100 TeV) are NEW (i.e not found in other IceCube searches)
- ✓ efficient atm. muon rejection (expect <10% atm. µ to remain after at low E)

Analysis Method

maximum likelihood based template method ("standard" in IceCube)
match observed deposited energy distribution (data) to prediction (simulation)

$$L(\boldsymbol{\theta_r}|\underline{n}) = \underset{\boldsymbol{\theta_s}}{\operatorname{astrophysics}} \underset{\boldsymbol{\theta_s}}{\operatorname{data}} \underbrace{\boldsymbol{\eta_s}}_{i=1} \underbrace{\boldsymbol{\eta_s}}_{i=1} \underbrace{\boldsymbol{\eta_s}}_{j=1} \underbrace{\boldsymbol{\eta_s}}_{i=1} \underbrace{\boldsymbol{\eta_s}}_{i=1} \underbrace{\boldsymbol{\theta_r}}_{n_{ij}!} e^{-\mu_{ij}(\boldsymbol{\theta_r}, \boldsymbol{\theta_s})}$$

$$\mu_{ij}\left(oldsymbol{ heta_r},oldsymbol{ heta_s}
ight)=\mu_{ij}^{atm.\,\mu}+\mu_{ij}^{atm.\,
u}+\mu_{ij}^{astro.\,
u}$$

+ quadratic penalty terms for nuisance parameters:

nuisance parameters (in this work):

atm. ν flux normalizations detector energy scale ϵ

Analysis Method

perform joint fit to three classes

range: $4.1 < \log_{10} E/GeV < 6/9$

- contained cascades from Northern Sky
- contained cascades from Southern Sky
- 3) partially contained cascades (All-Sky)

model assumptions

unbroken powerlaw astro v:

$$\Phi_{\nu} = \phi \times (E_{\nu}/100 \, \text{TeV})^{-\gamma}$$

with
$$v_e : v_u : v_\tau = 1:1:1$$

conventional v: HKKMS06

ERS08 prompt v:

parameter	sys. uncertainty	
γ	-	
ϕ	-	
ϕ_{conv}	1.0 ± 0.3	
ϕ_{prompt}	1^{+3}_{-1}	
arepsilon	1.00 ± 0.15	

uncertainty conventional v from [A. Fedynitch et al., PRD86 114024, 2012] uncertainty prompt v from upper-limit [IceCube, RRD89 062007, 2014]

Detector Systematics

- systematics related to energy scale dominant: E' ~ ε * E (shifting templates)
- DOM: efficiency to photons
- **Ice properties**: scattering + absorption
- evaluated using dedicated MC with varying DOM Eff, Ice properties
- \rightarrow absorbed by adding ϵ parameter to fit

Detector Systematics

- systematics related to energy scale dominant: E' ~ ε * E (shifting templates)
- **DOM:** efficiency to photons
- Ice properties: scattering + absorption
- evaluated using dedicated MC with varying DOM Eff, Ice properties
- \rightarrow absorbed by adding ε parameter to fit

Detector Syst.	Value	Ê
DOM	-10%	1.11
DOM	-5%	1.06
DOM	+5%	0.94
DOM	+10%	0.91
Scatt.	+10%	1.11
Abs.	+10%	1.11
Scatt./Abs.	-7%	0.96
Combined ε_{tot}	$1.00 \pm$	0.15

Results

Results

astrophysical cascades above 10 TeV:

- soft spectral index ($\gamma = 2.67^{+0.12}_{-0.13}$)
- reject atmospheric-only origin at 4.7σ [7 * ERS]
- ~65% of these cascades are extra-terrestrial (according to best-fit)
- disfavored γ = 2.0 at 3.5σ
 (" E⁻² without cutoff ")

Comparison with other Results

analysis, since dominated by stat. uncertainties)

Comparison with other Results

Cascade result consistent (<1 σ) with starting event analyses!

Comparison with other Results

Cascade result consistent (<1 σ) with starting event analyses! (insignificant < 2 σ tension with northern sky v_{μ})

Results

Challenging Isotropy? No!

- measure Northern and Southern Sky separately
- use contained cascades only
- large uncertainties due to spectral degeneracy with prompt component
- → kept nuisance parameters fixed at all-sky best-fit value

- ✓ separate North/South Fits consistent within the (large) uncertainties
 - ... as expected from an isotropic extragalactic neutrino flux

Results

Differential Flux Measurement

- relax power-law assumption
 using separate flux normalizations in
 bins of E_v (E⁻² distribution within each bin)
- uncertainties via profile likelihood
- consistent with best fit power-law

no evidence for deviation from single, unbroken power-law in the cascade channel (sensitive to v_e + v_τ)

Summary

- new MC based cascade event selection for IC79+IC86 2011 using cascade topology variables \rightarrow sensitive to $v_e + v_\tau$
- included partially contained cascades
 ⇒ significantly enlarges sample for E_v>100 TeV
- majority (~60%) of events new (not observed in previous IceCube searches!)
- sample is well described by single, unbroken powerlaw with per-flavor normalization = 2.3^{+0.7}_{-0.6} 10⁻¹⁸ GeV⁻¹s⁻¹sr⁻¹cm⁻² (at 100 TeV) spectral index = 2.67^{+0.12}_{-0.13}
- reject purely atmospheric origin at 4.7σ
- flux from northern and southern sky consistent (within current precision)
- good agreement with previous IceCube measurements

more data being analyzed - stay tuned!

BACKUP

comparing multi-variate results in normal approximation

$$\Delta m{ heta} = \hat{m{ heta}}_1 - \hat{m{ heta}}_2 \sim n\left(\mathbf{0}, \mathbf{\Sigma}_{m{ heta}_1} + \mathbf{\Sigma}_{m{ heta}_2}
ight)$$
 (requires independency) result 1 result 2

for known covariance matrices:

$$\frac{d^2 = \Delta \boldsymbol{\theta}^T (\boldsymbol{\Sigma}_{\theta_1} + \boldsymbol{\Sigma}_{\theta_2})^{-1} \Delta \boldsymbol{\theta}}{d^2 \sim \chi_k^2, \text{ where } k := \dim \boldsymbol{\theta}}$$
 (*)

(*) remains true asymptotically (large N) if covariance matrices are estimated from data

→ use observed information matrix (hessian of -2 ln L) as estimator --

A. Wald, Trans. Amer. Math. Soc. 54 (1943)

T. W. F. Stroud, Ann. Math. Stat., Vol. 42, No. 4 (1971)

W. M. Patefield, Sankhya Ser. B, Vol. 39, No. 1 (1977)

note that uni-variate comparisons of multi-variate measurements may lead to erroneous inference about consistency, as no statement about the other parameters is made (e.g. "looking at index only")

atmospheric neutrino self-veto effect

- atmospheric are produced together with atmospheric μ (same cosmic ray induced air showers)
- southern sky: atmospheric ν are likely to be accompanied by atmospheric μ
- \rightarrow atmospheric μ rejection also suppresses atmospheric ν events

Challenging Isotropy? No! [more details]

- → Measure Northern and Southern Sky separately
- → use contained cascades only

Parameter	Best Fit (South)	Best Fit (North)
φ [10 ⁻¹⁸ GeV ⁻¹ s ⁻¹ sr ⁻¹ cm ⁻²]	1.9 ^{+0.8} _{-0.6}	1.7 ^{+1.3} _{-1.2}
γ	2.68+0.20 -0.22	2.69 ^{+0.34} _{-0.34}
ф [фнккмѕов]	0.97 ^{+0.30} -0.30	0.91+0.29
φ [φ _{ERS06}]	< 3.0 (1.1 ^{+3.0} -1.1)	< 3.0 (1.5 ^{+3.0} _{-1.5})
ε	1.04+0.15	0.97 ^{+0.15} -0.14

- Large uncertainties due to spectral degeneracy
- with prompt component
- separate North/South Fits consistent
- North/South consistency remains when nuisance parameters fixed

electron neutrino effective area comparison

