ICRC 2015 – The Hague, Netherlands

Reconstruction of cascade-type neutrino events in KM3NeT/ARCA

D. Stransky*, J. Barrios, L. A. Fusco, T.Heid, A. Heijboer and C. James on behalf of the **KM3NeT Collaboration**

* Friedrich-Alexander-Universität Erlangen-Nürnberg, ECAP, dominik.stransky@fau.de

KM3NeT/ARCA (Astroparticle Research with Cosmics in the Abyss)

KM3NeT is a future research infrastructure hosting the next-generation underwater neutrino observatory in the Mediterranean Sea. Within KM3NeT the ARCA detector is planned as an intermediate step.

Detection principle: Cherenkov light from secondary particles induced by all-flavour neutrino interactions is detected with multi-PMT optical modules mounted on vertical strings that are anchored to the seabed.

ARCA detector:

- total of 1 km³ instrumented volume
- 2 cylindrical detector blocks
- 115 strings per block
- 18 DOMs per string
- 31 PMTs per DOM
 Goal: investigation of high energy diffuse cosmic neutrinos and search for sources
 Needs: good energy and angular resolution for all-flavour neutrino interactions

Simulations

KM3NeT

- event generation: v_e , v_μ , v_τ , NC + CC, atmospheric μ
- secondary particle and light propagation
- ⁴⁰K background, PMT response and triggering

Full KM3NeT detector:

- total of 3 km³ instrumented volume
- 6 detector blocks

Event display for a 1 PeV simulated v_e CC event inside the detector. The color scale gives the hit times with respect to the time of the neutrino interaction. The size of the spheres corresponds to the measured charge. A cut has been applied to reduce the ⁴⁰K background.

Reconstruction methods

3 algorithms developed:

- method 1:
 - specifically developed for KM3NeT/ARCA
 - taking full advantage of multi-PMT digital optical modules (DOMs)
 - best performance regarding energy and angular resolution
 - only results for this method shown here
- method 2 and 3:
 - imported from ANTARES to new detector layout of ARCA
 - used for discriminating signal from background

vertex determination (*method 1*):

- merge hits within 350 ns on same PMT
- select coincidences as two merged hits within 20 ns on same DOM

Vertex resolution

- figures show vertex resolution after proper event selection (see [1])
- fitted position to reconstruct the position of the shower maximum (see left figure)
- resolution well below 1 m perpendicular to the shower direction (see right figure)

Distance to interaction perpendicular to the shower axis

minimize time residuals assuming spherical light emission

energy and direction determination (method 1):

- based on counting hit PMTs in a DOM (after vertex hit selection, see above)
- use three parameters (distance to DOM, angle to DOM, angle of PMT) for PDF
- PDF gives probability of a PMT being hit or not \rightarrow simple and fast
- find shower direction and energy via likelihood-fit using this PDF

Vertex resolution: In dark and light blue the 1 σ and 90 % quantile bands are shown.

Energy and angular resolution

High-purity event sample:

Sensitivity analyses have been performed for ARCA [1] allowing for the selection of a high-purity event sample. The plots on the left show the energy and angular resolution for this event selection with roughly 16 signal events per operation year of ARCA.

From ~50 TeV energies:

- median angular error well below 2°
- energy resolution roughly 5%

Events outside the instrumented volume

Angular resolution over reconstructed energy

Angular resolution over reconstructed energy

Energy and angular resolution: In dark and light blue the 1 σ and 90 % quantile bands are shown.

Events outside the instrumented volume:

Outside the instrumented volume of the detector approximately one event per operation year of ARCA survive the event selection [1]. The plots on the right show the energy and angular resolution for these events. Thus, even those events can be very well reconstructed.

Reference:

[1] D. Stransky et al. for the KM3NeT Collaboration, proceedings of this conference ID 1108.

Energy and angular resolution: In dark and light blue the 1 σ and 90 % quantile bands are shown.

