

Measurement of Lithium and Beryllium cosmic-ray abundances by the PAMELA experiment

Nicola Mori

University of Florence & INFN Florence

Elena Vannuccini

INFN Florence

on behalf of the PAMELA collaboration

34th International Cosmic Ray Conference - The Hague (NL), 1st August 2015

The PAMELA experiment

Resurs DK1 satellite

Satellite-borne experiment \downarrow

No atmospheric effects

Mission details

Orbit and altitude:

- elliptical, 360 600 km (up to 2010)
- circular, 600 km (since 2010)

Orbit inclination: 70°

Planned duration: 3 years

Launch: 15th June 2006

Technical data

Mass ~ 470 kg Height ~ 1.3 m Power cons. ~ 355 W Downlink rate ~ 10 GB/day

Current status

9 years in orbit
Data taking LT ~ 75%
~ 56 TB of raw data

The PAMELA collaboration

Aimed at light particles (up to oxygen)
Main focus on antiparticles

The PAMELA detector

Spectrometer

Microstrip silicon tracking system + perm. magnet
- magnetic rigidity R = pc/Ze
- sign of charge
- charge value from dE/dx

Time-Of-Flight (TOF) Plastic scintillators + PMT

- Trigger
- Albedo rejection
- Mass identification up to 1 GeV
- Charge identification from dE/dX

Anticoincidence

Plastic scintillators + PMT

- Multi-particle and interacting event rejection

Electromagnetic calorimeter

W/Si sampling (16.3 X_0 , 0.6 A_T)

- e^{+}/p , e^{-}/p discrimination (shower topology)
- Direct energy measurement for et

Neutron detector

36 ³He counters

High-energy e/h discrimination

Optimized for $|Z|\sim 1$ particles

Tracking performance: $\sigma_x = 3 \mu m$, $\sigma_y = 11 \mu m$, MDR = 1.2 TV

The PAMELA detector

Spectrometer

Microstrip silicon tracking system + perm. magnet
- magnetic rigidity R = pc/Ze
- sign of charge
- charge value from dE/dx

Time-Of-Flight (TOF) Plastic scintillators + PMT

- Trigger
- Albedo rejection
- Mass identification up to 1 GeV
- Charge identification from dE/dX

Anticoincidence

Plastic scintillators + PMT

- Multi-particle and interacting event rejection

Electromagnetic calorimeter

W/Si sampling (16.3 X_0 , 0.6 A_T)

- e^{+}/p , e^{-}/p discrimination (shower topology)
- Direct energy measurement for et

Neutron detector

36 ³He counters

High-energy e/h discrimination

Optimized for $|Z|\sim 1$ particles

Tracking performance: $\sigma_x = 3 \mu m$, $\sigma_y = 11 \mu m$, MDR = 1.2 TV

Light nuclei measurements

- · PAMELA has already published p, He, B, C
- Intermediate masses: Li & Be
- Data anlysis is in an early stage
 - Event quality criteria
 - Charge selection
 - Efficiencies
 - Preliminary results
 - No corrections

Event selection

- Preliminary selection: remove TRK clusters with dE/dx < 5 MIP
 - Removes backscattering from CALO, delta rays, protons and relativistic helium
- Magnetic spectrometer → magnetic rigidity
- Track quality criteria:
 - Single fitted track
 - 4X 3Y LA4
 - Light χ^2 selection
 - Fiducial containment → GF = 19.9 cm² sr

Event selection

- Charge selection: dE/dX vs 1/B
 - $-1/\beta \sim gaussian$
 - No isotopic separation
- Time of flight quality selection
- dE/dX from TRK and ToF:
 - TRK_y vs 1/β
 - Excluding sat. clusters, only relevant for Be
 - ToF S_{12} vs $1/\beta$
 - For Li: additional selection on single TRK clusters to reject He

Event selection

- MDR selection
 - Mitigates the effects of finite rigidity resolution at high energies
 - Full correction by Bayesian unfolding
 - Not done in this analysis

Charge selection: TRK

Only non-saturated clusters

Charge selection: TOF₅₁₂

Selection efficiencies

- Measured from flight data
 - Thanks to detector redundancy
- Tracking efficiency:
 - Pre-select Li and Be events with ToF and CALO-0
- Charge selection efficiency:
 - Pre-select with S11, <S2> and CALO-0 (vs. 1/B)
- TBD: Monte Carlo corrections & cross checks

Efficiencies for Li

0.2

10²

10

10³

0.2

10

Efficiencies for Be

0.2

R (GV)

10³

10²

10

0.2

10

Fluxes

- Shaded red area: particle slow-down effects
 - · Still to be corrected
- · No MC corrections
- Not unfolded
- Only statistical errors

- Shaded grey area: relevant MDR effects for Be (due to saturated clusters)
 - Still to be corrected

Ratio

- Shaded grey area: relevant MDR effects for Be (due to saturated clusters)
- Still to be corrected

- No MC corrections
- Not unfolded
- Only statistical errors

Summary

- The measurement of the Li and Be fluxes with PAMELA is ongoing
 - Complementary work on isotopes (talk by W. Menn in this session)
- Up to now, work has been focused on flight data (data selection and efficiencies)
- Work on MC data (for corrections, unfolding etc.) is starting

