Ideas to search for Hidden Valley

Marcin Kucharczyk (HNI Krakow)

CLICdp WG Analysis Meeting 02.12.2014

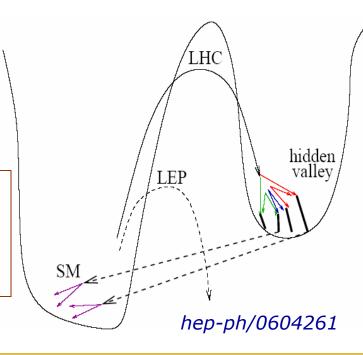
Theoretical models

Hidden sector – generic possibility for NP

"Sectors with non-abelian gauge group with a new quantum number "v" (analogous to charge $\rightarrow v = 0, \pm 1$), which couple weakly to the Standard

Model via higher dimension operators, and which has a mass gap."

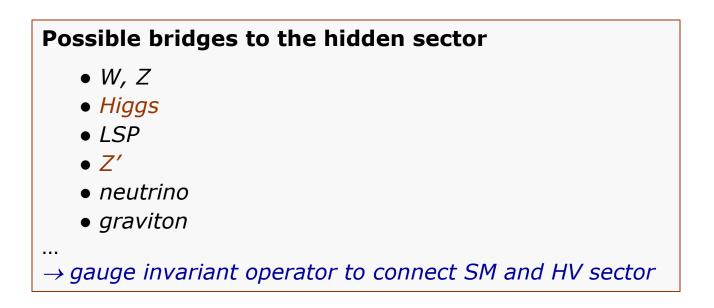
Strassler & Zurek


Consequence of string-theory

 \rightarrow additional gauge sectors may be introduced to SM, SUSY, TeV-ED

- hidden sector "v-sector"
- communicator interacts with both sectors

BARRIER (communicator's high mass, weak couplings, small mixing angles, ...)


- \rightarrow weakens the interactions between sectors
- \rightarrow production of new particles rare at low energy

Hidden sectors and communicators

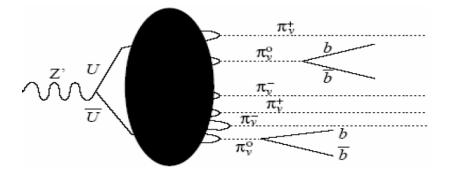
SM group G_{SM} extended with non-abelian group G_v

- \rightarrow all SM particles neutral within G_v
- \rightarrow if energy sufficient $\rightarrow v$ -particle charged within G_v , neutral under G_{SM}

At TeV scale high dimension operators (Z', Higgs) make possible interactions $SM \leftrightarrow v$ -particles

How to find the hidden sector

- Connector particle charged under both sectors
 - \rightarrow higher dimensional operator (e.g. Higgs 2-dim)
- *v*-hadrons (π_v^0)
 - \rightarrow neutral under G_{SM}
 - \rightarrow weakly coupled to SM
 - \rightarrow can decay into combinations of SM particles (quark or lepton pairs)
 - \rightarrow macroscopic decay lengths


LOOKING FOR: long-lived particles (LLP's)

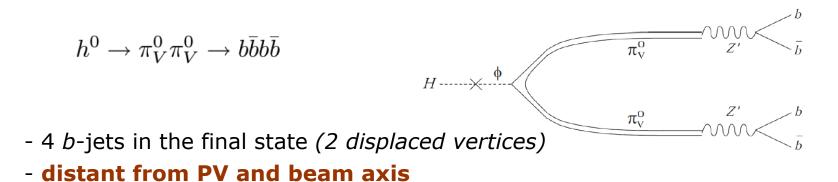
if lifetime between 1 ps and 1 ns (characteristic for weak decays) *can be identified in tracking systems by displaced vertices*!

Direct production via Z'

Direct multi- n_v production

•
$$Z' \rightarrow \pi_v^0 + \pi_v^+$$

 $\downarrow b\bar{b}$ $\downarrow missing energy$



- π_v^0 and π_v^{\pm} are electrically neutral!
- *v*-quark production results in multiple *v*-hadron production with ratio $m(Z')/\Lambda_v$ (Λ_v : *v*-confinement scale)

v-hadron production multiplicities could be **large if** $\Lambda_v << 1TeV$

Higgs decays into v-particles

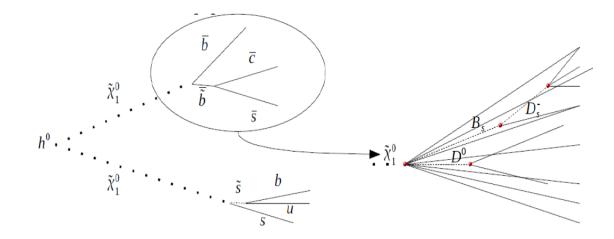
• SM Higgs may decay into 2 v-particles, each decaying to bb(bar)

Scalar decaying to the heaviest particles it has access to in order to defeat natural helicity suppression

• Hidden Valley $\rho_v^{\ 0} \rightarrow di$ -lepton

$$h^0
ightarrow
ho_v{}^0
ho_v{}^0$$
, both $ho_v{}^0{}'s
ightarrow \mu^+\mu^-$

- 4 muons in the final state
- search for v-particles in muon chambers (lifetimes >> 1ns)


Phys. Lett. B651 (2007) 374

mSUGRA with baryon number violation

Similar signatures (*displaced vertices*) have other models like mSUGRA with BNV "Six-Quark decays of the Higgs Boson in Supersymmetry with R-Parity Violation"

Kaplan model

- LSP in MSSM (neutralino) may decay because of baryon number violation
- neutralino decays into 3 quarks via virtual squark
- within this model light Higgs may decay into 2 neutralinos

6 (*b*)-jets in the final state (3 displaced vertices)

Phys. Rev. Lett. 99 (2007) 211801

If there is a hidden valley sector...

What states?

How many?

How do we know these states are SM gauge singlets?

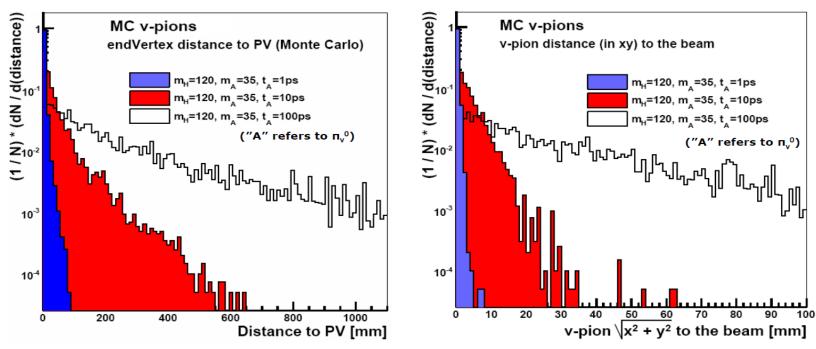
Masses/spins of states

Symmetries of the hidden sector

How does it communicate to SM?

What communicator?

Experimental challenges


Analysis strategy

v-paricles have non-zero lifetime

 \rightarrow analysis based on reconstruction of SV's "far" from PV and beam axis

- \rightarrow displaced vertices (DV)
- at least 2 displaced vertices
- distant from beam axis
- nr of tracks assigned to DV > 5 (to eliminate the background from b-hadron decays)
- cut on inv. mass of the DV

Signal samples generated using Pythia 6.4 for pp collisions

Background

Main sources of background at hadron colliders

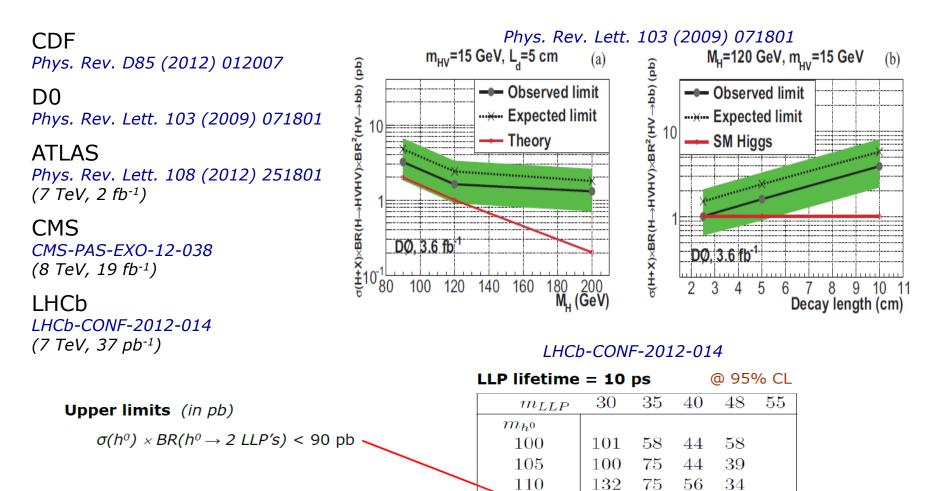
- Displaced vertices from secondary interactions with detector material
 - \rightarrow eliminate by MATTER VETO

QCD background

 \rightarrow inclusive *bb(bar)* production

(4b's produced because of NLO effects, like gluon splitting)

- \rightarrow 4b's
- \rightarrow 4c's

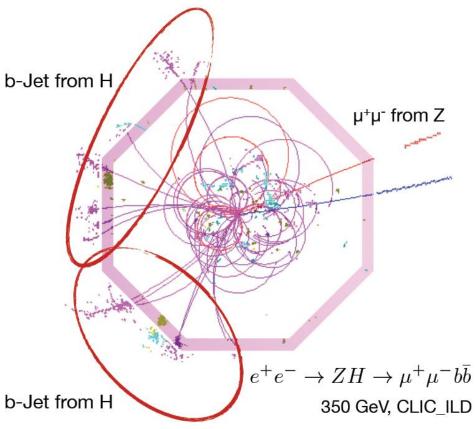

 \rightarrow 2b+2c

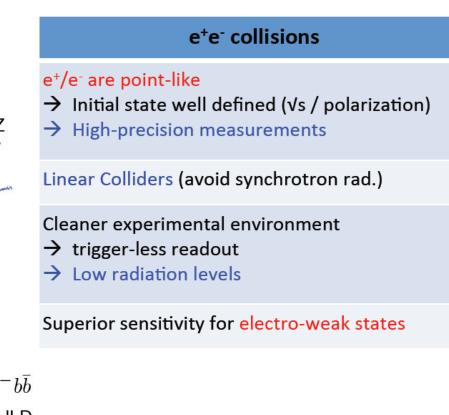
Hadron colliders

- high background levels
- high particle multiplicities
- unknown initial state
- complex trigger

Limits from hadron colliders

Limits from hadron colliders for $H \rightarrow \pi_v^0 \pi_v^0$, $\pi_v^0 \rightarrow bb(bar)$


 $\sigma(h^0) \times BR(h^0 \rightarrow 2 LLP's) < 93 \text{ pb}$


.48

Prospects at CLIC

Idea of Hidden Valley searches at CLIC

• Clean experimental environment in e⁺e⁻

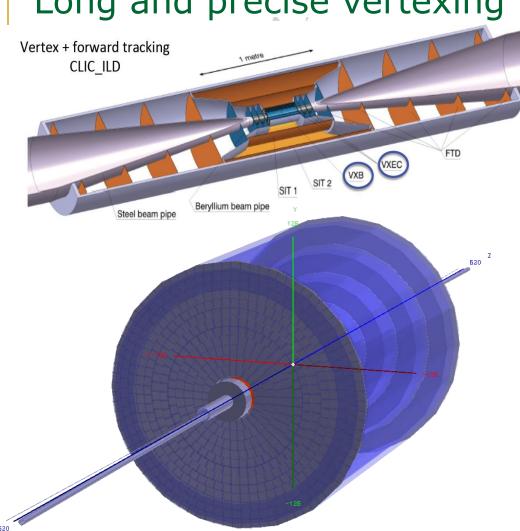
from Frank Simon's slides

Idea of Hidden Valley searches at CLIC

• High energy and integrated lumi

CLIC: e⁺e⁻ collider, staged approach

- 500 fb⁻¹ @ 350 375 GeV : precision Higgs and top physics
- 1.5 ab⁻¹ @ ~1.5 TeV : precision Higgs, precision SUSY, BSM reach, ...
- 2 ab⁻¹ @ ~ 3 TeV : Higgs self-coupling, precision SUSY, BSM reach, Exact energies of TeV stages would depend on LHC results


• No trigger

→ long-lived states cannot be missed!

• Jet reconstruction based on particle flow

 \rightarrow fine-grain calorimetry

→ complex forward calorimeter

Long and precise vertexing + tracking

- ~25×25 μm pixel size => ~2 Giga-pixels
- 0.2% X₀ material per layer <= very thin !
 - Very thin materials/sensors
 - Low-power design, power pulsing, air cooling
 - Aim: 50 mW/cm²
- Time stamping 10 ns
- Radiation level $<10^{11} n_{ea}$ cm⁻²year⁻¹ <= 10^4 lower than LHC

A long main tracker is crucial for the forward tracking performance:

- momentum resolution depends even stronger on the lever arm at lower angles
- do not want a tracker shorter than the one of ILD (2.3 m)

from Frank Simon's slides

- Possible to reconstruct displaced SV's
- Ability to measure π_v^0 lifetimes up to 300-500 ps (?)

CLIC – detector requirements

★ momentum resolution:

e.g. Smuon endpoint

Higgs recoil mass, Higgs coupling to muons

$$\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \,\mathrm{GeV^{-1}}$$

jet energy resolution:

e.g. W/Z/h di-jet mass separation

impact parameter resolution:

e.g. c/b-tagging, Higgs BR

$$\sigma_{r\phi} = 5 \oplus 15/(p[\text{GeV}] \sin^{\frac{3}{2}} \theta) \mu \text{m}$$

★ angular coverage, very forward electron tagging

from Lucie Linssen's talk

LHC vs CLIC

- discovery (energy reach, larger cross sections) vs. precision (mass, spin measurements)
- data acquisition / trigger

(LHC e.g. 40 MHZ \rightarrow 100 Hz \Rightarrow possibility to miss long-lived states)

less of a challenge at CLIC

(event rate smaller, though more information in each event)

- LHC might only provide guidance
 - → energy scale of the bridge to hidden sector (light LSP, or heavy Z0?)
- **discovery of HV may only be possible at linear colliders like CLIC** (e.g. if Higgs has rare decays into v-particles, will not be seen at LHC)

Summary and plans

- Hidden sector generic possibility for BSM physics
- Motivated by dark matter
- Good prospects for e⁺e⁻ colliders
 - \rightarrow clean experimental environment
 - \rightarrow high energy and statistics to be collected
 - \rightarrow long vertexing + tracking

Plans

- Implement new particles to the CLIC generating software
- Sensitivity studies for different energies
- Learn CLIC software first