

Status of $H \rightarrow \tau^{+}\tau^{-}$ for the Higgs paper

Philipp Roloff (CERN)

CLICdp WG Analysis meeting, CERN, 02/12/2014

Slides by Astrid from 23/04/2014

Plans

Current results:

\sqrt{s}	350 GeV	1.4 TeV	3 TeV	-
$\sqrt{S+B}/S$ (Method 1)	6.9%	4.2%	7.3%	-
$\sqrt{S+B}/S$ (Method 2)	6.2%	3.6%	5.5%	

• Uncertainty on $\sigma x BR$

• 3 TeV much worse than 1.4 TeV!

Plans:

- No further idea to improve results.
- Kinematic variables more similar than at 1.4 TeV
- Background significantly larger than at 1.4 TeV mainly due to contibution from $\gamma\gamma \rightarrow \tau\tau$.

Started to prepare the LCD note. Goal is to finish this week and send first draft by next week.

A. Münnich $h \rightarrow \tau \tau$

4

<u>**350 GeV:**</u> m(H) = 126 GeV, backgrounds okay \rightarrow results final

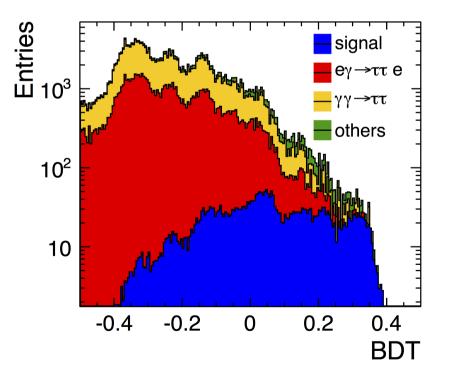
<u>1.4 TeV:</u> Reanalysis done:

• m(H) = 120 GeV \rightarrow m(H) = 126 GeV

included missing backgrounds
(before only initial-state photons from Beamstrahlung)
found that "γγ → ττll" contains γγ → ττνν events
→ double counting of "γγ → ττνν" events (irreducible bkg.)
→ fixed

Result: 4.2% \rightarrow shown at LCWS14

<u>**3 TeV:**</u> \rightarrow see next slide


Changes compared to Astrid:

- Removed same issue of double counting backgrounds as at 1.4 TeV
 → small improvement
- Used TMVA in ROOT 5.28 (as for 350 GeV and 1.4 TeV)
- \rightarrow large improvement

Current result: $\Delta[\sigma(Hv_e^{\overline{v}_e}) \times BR(H \rightarrow T^+T^-)] = 4.4\%$

 \rightarrow very similar precision at 1.4 and 3 TeV

 \rightarrow O(1%) precision on g_{πH} from 1.4 + 3 TeV combined with -80% polarised electron beam (exact number from fit)

