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Measuring Spatial Structures
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Exploiting Quantum Statistics (QS)
to measure the source size

® The last stage of particle interactions is freeze-out

® At freeze-out in high-energy particle collisions, the
characteristic separation of particles is femtoscopic

(Ax~10-'5 m).

AxAp > 21h

AxAp ~ 21h

® Bose-Einstein correlations will be visible for Ap<~0.5 GeV/c.

Relative momentum correlations are sensitive to the relative
separation at freeze out.
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Exploiting Quantum Statistics (QS)
to measure the source size
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Bose-Einstein correlations
are in a very narrow region of phase-space

A:BAp < 27Th

HIJING Pb Pb
\/SNN = 2. 76 TeV
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Pair probability
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4— Observable
Bose Emstem correlah@ns

only in this region. 1% of all pairs
I

HIJING

Wang & Gyulassy
PRD 44 3501




Femtoscopy (10-19)

The study of particle correlations at low relative momentum

Low Q region is dominated

s LWy PR =TTV by Quantum Statistics (QS)
" MMl PO N5, =002 TOV d Coulomb correlations
e  HighN , Pb-Pb s, =2.76 TeV an ou '
Clean region of study
AKA:
Bose-Einstein Correlations
ALICE Quantum Statistics Correlations

PRELIMINARY

“HBT” Correlations

Aaa,
AAA

L AL,
P EREEge . AL AL
%0000000000000000088iiisssssssssnnusibs

= Triplet relative momentum




2 Uses of Femtoscopy

The last stage of particle interactions is “freeze-out

Measure:
Space-time structure at freeze-out

(e.g. Radius)

Sensitive to dynamics
of the collision.
(e.g. Hydrodynamics or not?)
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Measure:

Quantum coherence
of particles at freeze-out.

Very sensitive to dynamics of the
collision.



Why is the Source Radius Important

= pp R __ (no hydro)
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Schenke & Venugopalan
arXiv:1405.3605
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" IP-GLASMA
m=0.] GeV

Schenke & Venugopalan
arXiv:1405.3605

There are other hydrodynamic
predictions as well:

Bozek and Broniowski,
Phys. Lett. B 720,250 (2013)




E Measuring the Coherent
Fraction of Pions

Coherent pool of particles:
ordered phases,
same quantum state

Chaotic pool of particles:
random phases

Pion condensation, Disoriented Chiral Condensates, +.....
may create a coherent pool of pions.

For coherence to survive in the final state,

the chaotic pool must not interact with the coherent pool.
Existence of such coherence would imply 2 disjunct sources!
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2-pion Bose-Einstein
Contributions
2-pIioNs

I
I

Chaotic pool 7}{

Coherent pool

1 suppressed combination

15



3-pion Bose-Einstein
Contributions

3-PIoNS
It T T

Coherent pool

Chaotic pool T'XT'

2 suppressed combinations
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4-pion Bose-Einstein
Contributions
4-plons

I T TE T
| ]

Pt

Coherent pool

Chaotic pool

X

3 suppressed combinations

5 3 =

=
3 3 3 =

Resolution of coherence increases
with the number of pions used.
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Pair Exchange Amplitude
— Building Blocks of Bose-Einstein Correlations

Chaotic pool

Coherent pool

Teh(p,py)

Teoh(p,pu)

T1s1s the pair exchange amplitude:
Fourier Transform of source space-time distribution.

It Is the building-block of all orders of Bose-Einstein
correlations.
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2-boson Symmetrization

Diagrams derived from
I. Csorgo
Heavy lon Physics 15 1-80

1+ (1-G)*(T13)°

2G(1 - G) T3 Ti5" cos(giy ")

phase of chaotic-coherent
iINnterference.

coherent fraction of pions Equations derived from

l. Andreev et al.
Int. J. Mod. Phys. A 8 4577
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3-boson Symmetrization

;
Cs=1 +<:>+<:,‘y+{i> + 2 permutations
2

1
+ é +A+ ‘\ + '4' + 1 permutation
3 il

Diagrams derived from
I. Csorgo
Heavy lon Physics 15 1-80
2(0)



4-boson Symmetrization

1
Ca=1+ <:>+<:"y+4fi> + 5 permutations
2
1 3
OO0 OO0+ 2 pemutatons
2 4

1
+ E + f\: i‘ + ','S + 7 permutations
3 p TS
1 2
+I:I+I I+I §+I iﬂ i + 5 permutations
4 3 -4-

Diagrams derived from
I. Csorgo
Heavy lon Physics 15 1-80




Standard Correlation
FuNnctions

o ALV J0) ZIRE) UV o = momentum
~ Ni(p1)Ni(p2)..-Ni(pn)

Kr3 = |pti + P12+ P13 /3

Kr4 = |p11 + P12+ P13 + P14l /4
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Multi-Pion Coulomb Interaction

Multi-body Cou
However, asym

omb wave-functions are not known exactly.

ototic solutions exist which are applicable

to high-energy collisions.

N

|

Asymptotic Scenarios

or @

E.O. Alt et al.
Phys. Rev. A 47 2004
I. Csorgo et al. p3
PLB 458 407
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Check that 3-body
Coulomb corrections
WOrk

The cumulant (hollow points)
are Coulomb corrected.

Consistency with unity
demonstrates success of
3-body Coulomb ansatz

ALICE

y PRC 89 024911 (2014)



New: 4-pion Coulomb Check

ALICE Preliminary, Pb-Pb \s,,=2.76 TeV
Centrality 0-5%, 0.16<K;,<0.3 GeV/c

° C?S

o (45 2-pion removal

¢ OS

* - -+ + correlation well understood. Cumulant (black) near unity.
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New: 4-pion Coulomb Check

ALICE Preliminary, Pb-Pb \s,,=2.76 TeV
Centrality 0-5%, 0.16<K;,<0.3 GeV/c

° C‘?S

o ¢$ 2-pion removal
et

0.15
Q, (GeVic)
* - - -+ correlation mostly understood. Cumulant (black) near unity.
* Ongoing studies in pp and p-Pb suggest that the reside is not
Coulomb related.
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Dilution from
non-Femtoscopic Pairs

For pairs with relative separation £ 50 fm
there IS Nno observable Bose-Einstein correlation.
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4-pion possibilities in the Core/Halo picture

I. Csorgo et al.
Core Z. Phys. C 71 491

All 4 originating from the core (short-lived emitters)

1 or O originating from the core.
No observable Bose-Einstein correlations
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Multi-pion Distributions

4-pion Distributions

N4(p1, p2, p3, p4) — 4 pions from same event
N3(pi, p2, p3) Ni(p4) — 3 pions from same event
N2(p1, p2) Ni(p3) Ni(p4) — 2 pions from same event
N2(p1, p2) N2(p3, p4) — 2 pairs from same event
Ni(p1) Ni(p2) Ni(p3) Ni(p4) — All from different events

Ks = K22 Ku!3 Kp!* Kp23 K2 K23* — 4-body Final-State-Interaction

29



|solation of 4-pion QS

Quantity of Interest
JaaN1(p1)N1(p2)N1(p3)Ni(ps)
f2N2(p1, p2)N1(p3)Ni(pa)
f3N3(p1,p2,p3)Ni(pa)
f4aK4(q12: 913,914,923, 924, 434

Core/Halo
41
Core/Halo
42
Core/Halo
43
Core/Halo
44

2 = “lambda” = 0.7 +- 0.05 (fraction of correlated pairs)
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Data and Track Selection

Collision types

PP Vs =7TeV
p-Pb v/snn = 5.02 TeV
Pb-Pb +/snn = 2.76 TeV

Pair Cuts

* Track merging and splitting:
pair angular separation

Track Selection

* Pions selected based on their specific
energy loss in the Time Projection Chamber.

Time of Flight also used for p > 0.6 GeV/c. . , , .
e b1 > 0.16 GeV/c For 3 (4) pions, pair cuts applied

b < 1.0GeVic to all 3 (6) pairs in the triplet
e N <.O.8 (quadruplet).

31



Freeze-out Radil
Extracted from 3-pion
Bose-Einstein Cumulants



3-pion cumulants remove 2-pion correlations

pp 15=7 TeV, (N _)=8.6 +0.4

F

projection

Hollow points:
e ¢ projection K% peak visible.

|
0.2< q}-“;,q;’ < 0.5 GeV/c :' \

O 1

OOOQ 500 E)OO s
00006000060°0006660°0 1% YeleleYs

1
1
I‘ 1

]

©00%0%, L0000 00% “0.0',“g..0,"“0,0 DA S O I | d P oints:
Cumulant.

K% peak removed

ALICE
Phys. Lett. B accepted
33 arXiv:1404.1194 (2014)




3-pion Correlation Functions

(N_)=901=45

- Gaussian
- - Edgeworth

— Exponential

pp Vs=7 TeV Pb-Pb \s,,=2.76 TeV

A Cé_ o) Cé—

+++ + + 4T

A G : ° Ci*
¢ PYTHIA ¢, ¢ HIJING c,

low multiplicity =~ mid multiplicity  high multiplicity

ALICE
Phys. Lett. B accepted
34 arXiv:1404.1194 (2014)



Edgeworth Radii and Intercepts

+ pp Vs=7 TeV
= p-Pb |s5,=5.02 TeV
e Pb-Pb |s,,=2.76 TeV

0.16<K ;<0.3 GeV/e
0.2<k,<0.3 GeV/e

Two-Pions
O O 4

Three-Pions

o H +

* Non-Gaussian fits (Edgeworth or
Exponential) provide a better fit of the
correlation function.

* Radii report the 2nd cumulant of the
Edgeworth correlation function.

* p-Pb similar to pp.
* Pb-Pb not similar to pp/p-Pb.

* Intercept parameters much closer to
their chaotic limits.

ALICE
Phys. Lett. B accepted
35 arXiv:1404.1194 (2014)



Radii Comparison with IP-GLASMA

— GLASMA pp Rinitial
— GLASMA p-Pb Rinitial
— GLASMA Pb-Pb R

initial
E GLASMA PP Rhydro
E GLASMA p-Pb Rh

Message:
Similarity of ALICE radii

in p-Pb and pp
can be reproduced with GLASMA

initial conditions alone.

ydro

E GLASMA Pb-Pb R
< ALICE pp
o ALICE p-Pb

hydro

o ALICE Pb-Pb
They can also be reproduced

with a hydrodynamic phase
in p-Pb.

Schenke & Venugopalan
arXiv:1405.3605

® GLASMA points are first scaled such that the calculations in pp match the ALICE pp data.
Scale = |.15. GLASMA calculations have uncertainty due to infrared cutoff (m=0.1 GeV).
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Coherence
Measurements from
3-pion Cumulants
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[3

A comparison of 3-pion to 2-pion
Bose-Einstein correlation strengths

r3(0) = 2.0 for no coherence
r3(Qz) = 2.0 additionally for no 3-pion phase
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r3 for 6 centrality
pbins In Pb-Pb

ALICE Pb-Pb ys,,=2.76 TeV

SNN

All correlations are first
Coulomb corrected.

10-20% & 20-30% N\

r3 1S suppressed below 2.0.
Intercept corresponds to
23% * 8% coherence

30-40% 40-50% ° at low pr.

ALICE
PRC 89 024911 (2014)




r Calculation in Therminator

| %2/ ndf
N

|| 'Quartic

aQuartic

12.57 / 21
2.044 = 0.007
8669 + 4315.9

40

Therminator model calculation
without coherence.

No Qs dependence in this
model.

= No effect of the 3-pion
phase.

Therminator 2 model:
Kisiel et al.,
Comput. Phys. Commun. 174, 669
(2006)



Coherence
Measurements from
4-pion Correlations

41



Fquations to Build QS
correlations with coherence

G = coherent fraction of pions

Extract building block, Tj, from here
1-G)*(Tj3 + T3+ T33)
6G(1—G)* +2(1 — G)*) T2 T3 T3
1 —G*)(T{s + T3 + Tia + Ty + Ty + Tis)
4G(1-G)’ + (1 - G) (T T4 + T3 T + T3 T53)
6G(1 —G)* +2(1 — G)*)(T12T13To3 + T12T14Tas + T13T14Tas + Ta3 Tog Tas)
8G(1—G)’ +2(1 — G)*)(T12T13ToaTss + T12T14 T3 Taa + T13T14To3 Tas)

+
_+_
+
+

These equations valid for Reon=Rch (coherent Radius = chaotic Radius).
We will also consider Reon=0 (point source).
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Prootf of Principle

QS
] C4

QS(o_pi
+ ¢, >(2-pion removal)

e C°(cumulant)

—— C;* built from C,

Therminator model calculation
without coherence.

Measured 4-pion correlation
IS close to the “bullt”
correlation.

Therminator 2 model:
Kisiel et al.,
Comput. Phys. Commun. 174, 669
(2006)




New: 4-pion Bose-tinstein

ALICE Preliminary, Pb-Pb \s,,=2.76 TeV
Centrality 0-5%, 0.16<K;,<0.3 GeV/c

IS8

Qs
Cy
¢S 2-pion removal
S . .
¢S 2-pion + 2-pair removal

—— Built C$° (G=0%)

— Built ¢3° (G=30%, R_=R_)

coh

[ ] €9 systematic uncertainty
Built C$° systematic uncertainty

44

Extracted coherent
fractions are again

non-zero:

~30% for Recon = Ren
~15% for Rcoh =0



The Goal
with Coherence Studies

We need a consistent picture from the comparison
of all available orders of Bose-Einstein correlations:
3-to-2 (done)
4-t0-2 (done)
4-t0-3 (ongoing)

Consistent coherent fractions from each type
makes a convincing case!

Work is ongoing to extract coherent fractions in pp
and p-Pb.

45



summary

Freeze-out Radii:
e \We have extracted freeze-out radil from 3-
pion Bose-Einstein cumulants in pp, p-Pb,

and Pb-Pb collisions.

 Radil in pp and p-Pb are quite similar, at
similar multiplicity.

* Radii in Pb-Pb are quite different from pp
and p-Pb, at similar multiplicity.

* Radil are consistent with initial conditions
alone without a hydrodynamic phase.
However, they do not rule out hydrodynamic
expansion in all 3 systems.
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summary

Quantum Coherence at Freeze-out:

Our results indicate that 15-30% of charged

pions may be coherent at freeze-out.
First seen with the 3-to-2 compari

Confir
Ongoi
Olglele]

Ng WO

Ng WO

N pp and p-

med with the 4-to-2 compa

'k to check 4-to-3 co

D.

son (ra).
rison.

mparison.

'k to extract coherent fractions

Survival of partial coherence would imply:
— 2 disjunct particle-emitting sources!
— [ ocal thermal equilibrium at most.

—+Hydrodynamics not applicable to entire system of
low prt pions?




Supporting ALICE
Publications

“Iwo- and three-pion quantum statistics correlations in Pb-Pb collisions
at \/snw = 2.76 TeV at the CERN Large Hadron Collider”
Phys. Rev. C 89 024911 (2014)

‘Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and
Pb-Pb collisions at the LHC”
Accepted by Phys. Lett. B. arXiv: 1404.1194 (2014)
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Supporting Slides



Proot of Principle for
building C4 from c3 fits

QS
C4

QS(o_ni
c, ~(2-pion removal)

c3® (cumulant)

CSS built from c, fit
c;°(2-pion removal) built from c, fit

Therminator model calculation
without coherence.

Measured C4 and the partial
cumulant c4 (2-pion removal)
are close to their

“built” versions.

Therminator 2 model:
Kisiel et al.,
Comput. Phys. Commun. 174, 669
(2006)



Comparison of c¢3 at similar N¢;

| |
P-Pb \s\,=5.02 TeV | [} © p-Pb |5,=5.02 TeV
(N_)=23 =1 (N )=71=4

pp \s=7 TeV Pb-Pb |s,,=2.76 TeV|
(N =27 =1 (N _)=84=+4

0.16<K 4<0.3 GeV/c " 0.16<K ,<0.3 GeVi/c

--- Gaussian T\ - Gaussian
----Edgeworth 1 S ‘ ----Edgeworth 1
— Exponential- RN — Exponential-

.,
“ i
:"\ X

R ’s{—

\"' ~ L

\ .

NG

S,
N -

Correlation functions similar Correlation functions different
ALICE
Phys. Lett. B accepted
arXiv:1404.1194 (2014)




Exponential Radii and Intercepts

+ pp Vs=7 TeV
= p-Pb s, =502 TeV
e Pb-Pb V’%=2.76 TeV

Two-Pions
O O 4

Three-Pions

* Exponential fits generally better fit
low q part of the correlation
function.

e Radii report FWHM of a Cauchy

(Lorentzian) source profile.
* p-Pb similar to pp.

* Intercept parameters exceed the
chaotic limits. Source profile cannot
be entirely Cauchy.

ALICE
Phys. Lett. B accepted
>2 arXiv:1404.1194 (2014)



Near Equivalence between
2 types of Coulomb Calculations

same-charge, Q, Qo = Full Asymptotic wave-function

same-charge, GRS

mixed-charge, Q calculation.
mixed-charge, GRS

same-charge GRS = Generalized Riverside
mixed-charge — K12K13K23

006 008 0.1 ALICE
Q3 (GeV/c) PRC 89 024911 (2014)
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Gaussian Radii and Intercepts

+ pp \s=7 TeV
= p-Pb ys5,,=5.02 TeV
e Pb-Pb V’%=2.76 TeV

0.16<K; 4<0.3 GeV/e )
0.2<k,<03GeVie . j%at * Gaussian fits were the worst at

describing the correlation
function.

* p-Pb similar to pp.

* Intercept parameters far below
the chaotic limits. Source profile
cannot be entirely Gaussian.

- - - - ._.+__.._._....__._‘____
[ ]
500 0 60600600 38
A - e RoR - -0O- O O
by eoecp Py O 0 02000800 88

ALICE
Phys. Lett. B accepted
>4 arXiv:1404.1194 (2014)




C, & ¢3 in an extended range

ALICE p-Pb {5,=5.02 TeV, (N _)=9.8 = 0.5 ALICE p-Pb {5,=5.02 TeV, (N _)=9.8 = 0.5

B

0.2<k,<0.3 GeV/e 0.16<K; 4<0.3 GeV/e

AL
_._

&

FSI uncorrected FSI uncorrected

I

Statistical errors only Statistical errors only

02 04 06 0.8 1 12 14 16 1.8 2 02 04 06 0.8 1 12 14 16 1.8 2
q (GeV/c) 0, (GeV/c)

The baseline for 3-pion cumulants is more flat
than for 2-pion correlations.




2-boson Symmetrization

We consider 2 extreme cases for the size of the
coherent source radius

Point source
Rcoh — O

Full size source

Rcoh = Rch

|\/| easure d Va| ye Equations derived from

I. Andreev et al.
56 Int. J. Mod. Phys. A8 4577



4-plon Bose-
at High

—nstein

<T4

ALICE Preliminary, Pb-Pb \s,,=2.76 TeV
Centrality 0-5%, 0.3<K;,<1.0 GeV/c

QS
Cy

Qs
Cy

¢S 2-pion removal
S . .
¢S 2-pion + 2-pair removal

—— Built €5° (G=0%)

— Built ¢3®° (G=30%, R

h= I:‘Ch)

co

[ ] C$° systematic uncertainty
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Coherent Fractions vs. Q4

— T
ALICE Preliminary
Pb-Pb \s,,=2.76 TeV
Centrality 0-5%
0.16<K+,<0.3 GeV/c

<p1t>~0.23 GeV/c

),
o
o
),
)
O

— T T
e R_,=0 ALICE Preliminary
Pb-Pb \s,,=2.76 TeV
Centrality 0-5%
0.3<K;,<1.0 GeV/c

<p7t>~0.33 GeV/c

Y%
Y%

80

40

- e I:lcoh=Rch

(00
o

Coherent fraction (
(@)
o

Coherent fraction (
o
o

N B
o o
I I I | I I I | I I I | I I

e
e
O [+
on

Low Krts High Kt

e Coherent fraction is fairly stable with Qu.
e Systematics dominated by - - - + residual correlation.
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3- plOﬂS (C5™°) : Minima vs. Qs

IAII_ICIDEI F’lrellirrllir;a;y|
Pb-Pb \s,=2.76 TeV
Centrality 0-5%
0.3<K;;<1.0 GeV/c

),
)
o
),
)
o

Y%

| | | | | | | | | | | | |
Coherent fraction (
o
o

~
o

Y%

Coherent fraction (
o
I I | I I I ? I I I | I I I

ALICE Prellmlnary
Pb-Pb \s,=2.76 TeV
Centrality 0-5%

0.16<K;,<0.3 GeV/c

o0
o
(00
&)

N
o

N
o

=

002 003 004 005
0. (GeVic)

<pt> ~0.23 GeV/c <pt> ~0.33 GeV/c
Low Kri3 High K3

OO

e Coherent fraction is fairly stable with Qu.
e Systematics dominated by - - - + residual correlation.
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Isolation of 2-pion Quantum Statistics (QS)

Quantity of Interest

= fa1N1(p1)N1(p2

+  foo Ka(q12 NQQS(Z?MP

Sinyukov et al.,
Phys. Lett. B 432, 249 (1998)

foo estimated to be 0.7 +- 0.05 for this analysis
for =1 - fa0

f22 previously estimated in
ALICE 2014

60 PRC 89 024911 (2014)



|solation of 3-pion QS

ALICE 2014 Quantity of Interest
PRC 89 024911 (2014)

N1 (p1)Ni (
f32Na(p1, p2)
f)) (C]P qdi13.

(1= £ +3f.00 = f)* =3(1— f.)(1 -
3(1— 1)
f:

2 = “lambda” = 0.7 +- 0.05 (fraction of correlated pairs)
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Systematics Checked

Those which pertain to both measured and built C44S

Systematics are Q4 dependent

* -vS. + pions — 0.1%.

 TPC B field orientation — negligible.

* Tracking efficiency — 0.4% at low Q.

e variation of f¢2 (pair dilution). Default = 0.7, tried 0.65 and 0.75
— 6% at low Qa

e Momentum resolution corrections — 1% at low Q4

 Muon correction uncertainties — 2% at low Q.

High degree of correlation between measured and built C49S
for each of these variations.
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Systematics Checked

Measured C49S only

Systematics are Q4 dependent

e variation of fa1, 4o, fa3, fa4 from Therminator as compared to Core/
Halo prescription — 0.4% at high Qa

* Residue of mixed-charge (- - - +) cumulant — 5%

» K4 FSI factor — 1% uncertainty at low Qa.

test of factorization: K4 = Ka12 Ko13 Ko14 K23 Ko24 K34

These systematics are the least understood sources
of uncertainties. Future studies may reveal smaller values.
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Systematics Checked

Built C49S only
Systematics are Q4 dependent

* Interpolator of 2-particle weights (C2-1 = Tj)) — 0.7% at low Qa.
Cubic interpolation used in between bins of Qout, Jside, Jiong LY default.
Linear interpolation used as a variation.

e 2-particle weight problem at high Qginv

Statistical fluctuations at high ginv can give a negative Tj; which is not
allowed in theory (Bose-Einstein correlations are positive). In these
cases T1i] Is set to zero.

— 0.3% at high Qa, Low K4

— 4% at high Q4, High Kr4
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_|_

N
+
+
N
+
+
+
N
+
4

-guations to

Build QS correlations with

coherence, R.,,=0

)
(G)
)

(Tio+Ti3+To3) + (1 — G)* (T3 + T3 + T3)

2(T12T13 + TinTos + Ti3Taz) +2(1 — G)* (Ti2Ti3Tas) (3 = coherent
’G(l —G)(Ti2+Ti3+Tia+ T3 +Toa +T3a)

(1-G)* (T3 + T3 + Ty + T3 + Tz + Tia)

2G(1 — G)*(TioT3 + T3 T3a + TisToy + TisTas + TiaTo + Ti3T3)

fraction of pions

(1 G (TRT + T T + THT) Weiner et al.
2G(1 — G)E(TpT]z +T12T23 4+ T13T23 +T12T14 + T12To4 + T14124) Int.J.Mod.Phys.A.

26 4577 (1993)

2G(1 — G)}(T13T14 +T13 T34 + T14 T34 + Tr3Tas + o3 Tsa + TosTas)
( — G)’(T12T13Ta3 + Ti2TiaTos + T13T14T3a + Ta3 T4 T34)
2G(1 G)x( 114134 + T12T14T23 + T121723 T34 + T14123T34) T. Csorgo-
2G(1 — G)3(T1yTy3Tss + T2 T3aTos + T12Toa T3 + Ty3 TosTas) Heavy lon Phys.
( G)”( T14T13T23 + T14T13T24 + 113123124 + T14T241723) 15 1 (2002)
)" (T

2113124134 + T12T14T23T34 + T13T14T23T24)
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Full 4-pion Quantum
Interference Diagrams

I. Csorgo
Heavy lon Physics 15 1-80




. . Therminator2
Therminator?2 calculations of 0-5% Pb-Pb

2- and 3-pion Bose-Einstein correlations
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GaUSSian ﬁts in . Therminator 2 model:

Kisiel et al.,

Rinv,3 Sma”er than Rinv by ~O.6 fm (6%). Comput. Phys. Commun. 174, 669

(2006)
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. . Therminator2
Therminator?2 calculations of 0-5% Pb-Pb

2- and 3-pion Bose-Einstein correlations
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Edgeworth ﬁts |n . Therminator 2 model:

Kisiel et al.,

Rinv3 similar to Riny within ~0.3 fm (3%). Compu: P Commin 174,66
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O.16<KT’3<O.SGeV/c 3_plon COrre‘atlon
Functions In Pb-Pb

ALICE
PRC 89 024911 (2014)
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—Quartic 0.3<K7,4<1.0 GeVie Measure of coherent fraction

---Quadratic

by comparing 3-pion to
2-pion correlation strength

c3(q12,923,931) — 1

All Correlations are first

Coulomb corrected.
10-20% 20-30%

r3 1S consistent with 2.0.
Intercept is consistent with
0% coherence at high pr

30-40% 40-50%

ALICE
PRC 89 024911 (2014)
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[ | ALICE Pb-Pb |s,=2.76 TeV | |
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O mixed-charge
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Quadruplet Fractions in Therminator
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—— 0 interacting pairs
—— 1 interacting pair
2 interacting pairs
—— 3 interacting pairs
——— 4 interacting pair
5 interacting pairs
6 interacting pairs
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