

Quantum statistics measurements using 2-, 3-, and 4-pion Bose-Einstein correlations

Dhevan Gangadharan (LBNL) on behalf of the ALICE collaboration CERN PH seminar, Oct. 14th 2014

2014 Nobel Prize in Chemistry!

2014 Nobel Prize in Chemistry!

2014 Nobel Prize in Chemistry!

Exploiting Quantum Statistics (QS) to measure the source size

- The last stage of particle interactions is <u>freeze-out</u>
- At freeze-out in high-energy particle collisions, the characteristic separation of particles is <u>femtoscopic</u> $(\Delta x \sim 10^{-15} \text{ m}).$

$$\begin{array}{ll} \Delta x \Delta p \gg 2\pi \hbar & \begin{array}{c} \mbox{Classical:} \\ \mbox{no observable quantum phenomena} \end{array} \\ \Delta x \Delta p \sim 2\pi \hbar & \begin{array}{c} \mbox{Non Classical:} \\ \mbox{Bose-Einstein / Fermi-Dirac correlations} \end{array} \end{array}$$

• Bose-Einstein correlations will be visible for $\Delta p < \sim 0.5$ GeV/c. <u>Relative momentum</u> correlations are <u>sensitive to</u> the <u>relative</u> <u>separation</u> at freeze out.

Bose-Einstein correlations are in a very narrow region of phase-space

$$q_{\rm inv} = \sqrt{(\vec{p_1} - \vec{p_2})^2 - (E_1 - E_2)^2}$$

HIJING Wang & Gyulassy PRD **44** 3501

Femtoscopy (10-15)

The study of particle correlations at low relative momentum

Low Q region is dominated by Quantum Statistics (QS) and Coulomb correlations.

Clean region of study

<u>AKA:</u>

Bose-Einstein Correlations Quantum Statistics Correlations "HBT" Correlations

= Triplet relative momentum

2 Uses of Femtoscopy

The last stage of particle interactions is "freeze-out"

<u>Measure:</u>

Space-time structure at freeze-out (e.g. Radius)

Sensitive to dynamics of the collision. (e.g. Hydrodynamics or not?) <u>Measure:</u>

Quantum coherence of particles at freeze-out.

Very sensitive to dynamics of the collision.

Why is the Source Radius Important

Use

IP-GLASMA initial conditions alone (a model with only gluon fields).
→ Similar freeze-out radius in p-Pb as compared to pp.

Why is the Source Radius Important

Radius (fm) pp R_{initial} (no hydro) 8 p-Pb R_{initial} (no hydro) Pb-Pb R_{initial} (no hydro) Ο 6 pp R_{max} (hydro) p-Pb R_{max} (hydro) 5 Pb-Pb R_{max} (hydro) 4 3 **IP-GLASMA** 2 m=0.1 GeV Schenke & Venugopalan arXiv:1405.3605 ۰D³ 10² 10 $\langle N \rangle$ ch

Use

IP-GLASMA initial conditions alone (a model with only gluon fields).
→ Similar freeze-out radius in p-Pb as compared to pp.
Hydrodynamic expansion
→ Larger freeze-out radius.

p-Pb more comparable to Pb-Pb

> There are other hydrodynamic predictions as well: Bozek and Broniowski, Phys. Lett. B 720, 250 (2013)

Use 2

Measuring the Coherent Fraction of Pions

Chaotic pool of particles: random phases Coherent pool of particles: ordered phases, same quantum state

Pion condensation, Disoriented Chiral Condensates, +..... may create a coherent pool of pions.

For coherence to survive in the final state, the chaotic pool <u>must not interact</u> with the coherent pool. Existence of such coherence would imply 2 disjunct sources!

2-pion Bose-Einstein Contributions

<u>2-pions</u> ππ ππ ππ

1 suppressed combination

3-pion Bose-Einstein Contributions

 $\frac{3-pions}{\pi\pi\pi}$ $\frac{\pi\pi\pi}{\pi\pi}$ $\frac{\pi\pi\pi}{\pi\pi\pi}$

2 suppressed combinations

4-pion Bose-Einstein Contributions

 $\frac{4-\text{pions}}{\pi \pi \pi \pi}$ $\frac{\pi \pi \pi \pi}{\pi \pi}$ $\frac{\pi \pi \pi}{\pi \pi}$

3 suppressed combinations

Resolution of coherence increases with the number of pions used.

Pair Exchange Amplitude — Building Blocks of Bose-Einstein Correlations

T_{IJ} is the <u>pair exchange amplitude</u>: Fourier Transform of source space-time distribution. It is the building-block of all orders of Bose-Einstein correlations.

2-boson Symmetrization

$$C_2 = 1 + \underbrace{\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}}_2 + \underbrace{\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}}_2 + \underbrace{\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}}_2$$

Diagrams derived from T. Csorgo Heavy Ion Physics **15** 1-80

$C_{2}(1,2) = 1 + (1-G)^{2} (T_{12}^{ch})^{2}$ $+ 2G(1-G)T_{12}^{ch}T_{12}^{coh}\cos(\phi_{12}^{ch-coh})$

phase of chaotic-coherent interference.

coherent fraction of pions

Equations derived from I. Andreev et al. Int. J. Mod. Phys. A **8** 4577

3-boson Symmetrization

Diagrams derived from T. Csorgo Heavy Ion Physics **15** 1-80

4-boson Symmetrization

Diagrams derived from T. Csorgo Heavy Ion Physics **15** 1-80

Standard Correlation Functions

$$C_n = \frac{N_n(\mathbf{p_1}, \mathbf{p_2}, \dots, \mathbf{p_n})}{N_1(\mathbf{p_1})N_1(\mathbf{p_2})\dots N_1(\mathbf{p_n})}$$

p = momentum

Projection Variables

$$q_{ij} = \sqrt{-(p_i - p_j)_{\mu}(p_i - p_j)^{\mu}}$$

$$Q_3 = \sqrt{q_{12}^2 + q_{13}^2 + q_{23}^2}$$

 $Q_4 = \sqrt{2}$

$$k_T = |\vec{p}_{\rm T1} + \vec{p}_{\rm T2}|/2$$

$$K_{T,3} = |\vec{p}_{T_1} + \vec{p}_{T_2} + \vec{p}_{T_3}|/3$$

$$/q_{12}^2 + q_{13}^2 + q_{14}^2 + q_{23}^2 + q_{24}^2 + q_{34}^2$$
 $K_{T,4} = |\vec{p}_{T_1}|$

$$K_{T,4} = |\vec{p}_{T_1} + \vec{p}_{T_2} + \vec{p}_{T_3} + \vec{p}_{T_4}|/4$$

Multi-Pion Coulomb Interaction

Multi-body Coulomb wave-functions are not known exactly. However, asymptotic solutions exist which are applicable to high-energy collisions.

Q

Check that 3-body **Coulomb** corrections work

The cumulant (hollow points) are Coulomb corrected.

Consistency with unity demonstrates success of 3-body Coulomb ansatz

> ALICE PRC 89 024911 (2014)

New: 4-pion Coulomb Check

• - - + + correlation well understood. Cumulant (black) near unity.

New: 4-pion Coulomb Check $\pi +$ $\pi +$ π + π-

---+ correlation mostly understood. Cumulant (black) near unity.

Ongoing studies in pp and p-Pb suggest that the reside is not Coulomb related.

Dilution from non-Femtoscopic Pairs

For pairs with relative separation $\gtrsim 50$ fm there is no observable Bose-Einstein correlation.

4-pion possibilities in the Core/Halo picture

Core

Halo

T. Csorgo et al. Z. Phys. C **71** 491

All 4 originating from the core (short-lived emitters)

3 originating from the core

2 originating from the core

1 or 0 originating from the core. <u>No observable</u> Bose-Einstein correlations

Multi-pion Distributions

4-pion Distributions

N4(p1, p2, p3, p4)

- 4 pions from same event

- N₃(p₁, p₂, p₃) N₁(p₄)
- $N_2(p_1, p_2) N_1(p_3) N_1(p_4)$
- $N_2(p_1, p_2) N_2(p_3, p_4)$

 $N_1(p_1) N_1(p_2) N_1(p_3) N_1(p_4)$

- 3 pions from same event
- 2 pions from same event
- 2 pairs from same event
- All from different events

 $K_4 = K_2^{12} K_2^{13} K_2^{14} K_2^{23} K_2^{24} K_2^{34} - 4$ -body Final-State-Interaction

Isolation of 4-pion QS

Quantity of Interest

- $N_4(p_1, p_2, p_3, p_4) = f_{41}N_1(p_1)N_1(p_2)N_1(p_3)N_1(p_4)$
 - + $f_{42}N_2(p_1,p_2)N_1(p_3)N_1(p_4)$
 - + $f_{43}N_3(p_1, p_2, p_3)N_1(p_4)$
 - + $f_{44}K_4(q_{12}, q_{13}, q_{14}, q_{23}, q_{24}, q_{34})N_4^{QS}(p_1, p_2, p_3, p_4)$

$$\begin{array}{lcl} f^{Core/Halo}_{41} &=& -3(1-f_c)^4 - 8f_c(1-f_c)^3 + 6(1-f_c^2)(1-f_c)^2 \\ f^{Core/Halo}_{42} &=& -6(1-f_c)^2 \\ f^{Core/Halo}_{43} &=& 4(1-f_c) \\ f^{Core/Halo}_{44} &=& f_c^4. \end{array}$$

 $f_c^2 =$ "lambda" = 0.7 +- 0.05 (fraction of correlated pairs)

Data and Track Selection

<u>Collision types</u> $pp \sqrt{s} = 7 \text{ TeV}$ $p-Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$ $Pb-Pb \sqrt{s_{NN}} = 2.76 \text{ TeV}$

Track Selection

• <u>Pions</u> selected based on their specific energy loss in the Time Projection Chamber. Time of Flight also used for p > 0.6 GeV/c.

- *p*_T > 0.16 GeV/c
- *p* < 1.0 GeV/c
- |η| < 0.8

Pair Cuts

- Track merging and splitting: pair angular separation
- For 3 (4) pions, pair cuts applied to all 3 (6) pairs in the triplet (quadruplet).

Freeze-out Radii Extracted from 3-pion Bose-Einstein Cumulants

3-pion cumulants remove 2-pion correlations

3-pion Correlation Functions

Edgeworth Radii and Intercepts

• Non-Gaussian fits (Edgeworth or Exponential) provide a better fit of the correlation function.

• Radii report the 2nd cumulant of the Edgeworth correlation function.

- p-Pb similar to pp.
- Pb-Pb not similar to pp/p-Pb.

• Intercept parameters much closer to their chaotic limits.

ALICE Phys. Lett. B accepted arXiv:1404.1194 (2014)

Radii Comparison with IP-GLASMA

• GLASMA points are first scaled such that the calculations in pp match the ALICE pp data. Scale = 1.15. GLASMA calculations have uncertainty due to infrared cutoff (m=0.1 GeV).
Coherence Measurements from 3-pion Cumulants

r3

A comparison of 3-pion to 2-pion Bose-Einstein correlation strengths

$$r_3(Q_3) = \frac{c_3(q_{12}, q_{23}, q_{31}) - 1}{\sqrt{(C_2(q_{12}) - 1)(C_2(q_{13}) - 1)(C_2(q_{23}) - 1))}}$$

 $r_3(0) = 2.0$ for no coherence $r_3(Q_3) = 2.0$ additionally for no 3-pion phase

r₃ for 6 centrality bins in Pb-Pb

 $r_3(Q_3) = \frac{c_3(q_{12}, q_{23}, q_{31}) - 1}{\sqrt{(C_2(q_{12}) - 1)(C_2(q_{13}) - 1)(C_2(q_{23}) - 1))}}$

All correlations are first Coulomb corrected.

r₃ is suppressed below 2.0. Intercept corresponds to 23% ± 8% coherence at low p_T.

> ALICE PRC 89 024911 (2014)

r₃ Calculation in Therminator

Therminator model calculation without coherence.

No Q₃ dependence in this model. = No effect of the 3-pion phase.

> Therminator 2 model: Kisiel et al., Comput. Phys. Commun. 174, 669 (2006)

Coherence Measurements from 4-pion Correlations

Equations to Build QS correlations with coherence

G = coherent fraction of pions

$C_2^{QS} - 1$	=	$(1-G^2)T_{12}^2$	Extract building block, T _{ij} , from here	(52)
$C_3^{QS} - 1$	=	$(1-G)^2(T_{12}^2+T_{13}^2+T_$	$-T_{23}^2)$	(53)
	+	$(6G(1-G)^2+2(1-G)^2)$	$(-G)^3)T_{12}T_{13}T_{23}$	(54)
$C_4^{QS} - 1$	=	$(1-G^2)(T_{12}^2+T_{13}^2+T_$	$-T_{14}^2 + T_{23}^2 + T_{24}^2 + T_{34}^2$	(55)
	+	$(4G(1-G)^3 + (1-G)^3)$	$G)^4 (T_{12}^2 T_{34}^2 + T_{13}^2 T_{24}^2 + T_{14}^2 T_{23}^2)$	(56)
	+	$(6G(1-G)^2+2(1-G)^2)$	$(T_{12}T_{13}T_{23} + T_{12}T_{14}T_{24} + T_{13}T_{14}T_{34} + T_{23}T_{24}T_{34})$	(57)
	+	$(8G(1-G)^3+2(1-G)^3)$	$(T_{12}T_{13}T_{24}T_{34} + T_{12}T_{14}T_{23}T_{34} + T_{13}T_{14}T_{23}T_{24})$	(58)

These equations valid for $R_{coh}=R_{ch}$ (coherent Radius = chaotic Radius). We will also consider $R_{coh}=0$ (point source).

Proof of Principle

Therminator model calculation without coherence.

Measured 4-pion correlation is close to the "built" correlation.

> Therminator 2 model: Kisiel et al., Comput. Phys. Commun. 174, 669 (2006)

New: 4-pion Bose-Einstein π + $\pi +$ π + $\pi +$

Extracted coherent fractions are again non-zero: $\sim 30\%$ for $R_{coh} = R_{ch}$ ~15% for $R_{coh} = 0$

The Goal with Coherence Studies

We need a consistent picture from the comparison of all available orders of Bose-Einstein correlations: 3-to-2 (done) 4-to-2 (done) 4-to-3 (ongoing)

Consistent coherent fractions from each type makes a convincing case!

Work is ongoing to extract coherent fractions in pp and p-Pb.

Summary

Use 1

Freeze-out Radii:

- We have extracted freeze-out radii from 3pion Bose-Einstein cumulants in pp, p-Pb, and Pb-Pb collisions.
- Radii in pp and p-Pb are quite similar, at similar multiplicity.
- Radii in Pb-Pb are quite different from pp and p-Pb, at similar multiplicity.
- Radii are consistent with initial conditions alone without a hydrodynamic phase. However, they do not rule out hydrodynamic expansion in all 3 systems.

Summary

Quantum Coherence at Freeze-out:

- Our results indicate that 15-30% of charged pions may be coherent at freeze-out.
- First seen with the 3-to-2 comparison (r_3) .
- Confirmed with the 4-to-2 comparison.
- Ongoing work to check 4-to-3 comparison.
- Ongoing work to extract coherent fractions in pp and p-Pb.

Survival of partial coherence would imply: →2 disjunct particle-emitting sources! →Local thermal equilibrium at most. →Hydrodynamics not applicable to entire system of low p_T pions?

Supporting ALICE Publications

"Two- and three-pion quantum statistics correlations in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV at the CERN Large Hadron Collider" Phys. Rev. C **89** 024911 (2014)

"Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC" Accepted by Phys. Lett. B. arXiv: 1404.1194 (2014)

Supporting Slides

Proof of Principle for building C_4 from c_3 fits

Therminator model calculation without coherence.

Measured C₄ and the partial cumulant c₄ (2-pion removal) are close to their "built" versions.

Therminator 2 model: Kisiel et al., Comput. Phys. Commun. 174, 669 (2006)

Comparison of c3 at similar Nch

Exponential Radii and Intercepts

• Exponential fits generally better fit low q part of the correlation function.

Radii report FWHM of a Cauchy (Lorentzian) source profile.
p-Pb similar to pp.

 Intercept parameters exceed the chaotic limits. Source profile cannot be entirely Cauchy.

> ALICE Phys. Lett. B accepted arXiv:1404.1194 (2014)

Near Equivalence between 2 types of Coulomb Calculations

 $\Omega_0 = Full Asymptotic wave-function calculation.$

GRS = Generalized Riverside= $K_{12}K_{13}K_{23}$

ALICE PRC 89 024911 (2014)

Gaussian Radii and Intercepts

54

• Gaussian fits were the worst at describing the correlation function.

• p-Pb similar to pp.

• Intercept parameters far below the chaotic limits. Source profile cannot be entirely Gaussian.

> ALICE Phys. Lett. B accepted arXiv:1404.1194 (2014)

C₂ & c₃ in an extended range

The baseline for 3-pion cumulants is more flat than for 2-pion correlations.

2-boson Symmetrization

We consider 2 extreme cases for the size of the coherent source radius

$$C_2(1,2) = 1 + (1-G)^2 (T_{12}^{ch})^2 + 2G(1-G)T_{12}^{ch}$$

 $\frac{Full \ size \ source}{R_{coh} = R_{ch}}$

oint source

 $R_{coh} = 0$

$$C_{2}(1,2) = 1 + (1-G)^{2} (T_{12}^{ch})^{2}$$

$$+ 2G(1-G)(T_{12}^{ch})^{2}$$

$$Assumed$$

$$Assumed$$

$$Extracted$$

$$C_{2}(1,2) = 1 + (1-G)^{2} (T_{12}^{ch})^{2}$$

$$C_{2}(1,2) = 1 + 2G(1-G)(T_{12}^{ch})^{2}$$

m

4-pion Bose-Einstein at High K_{T4}

Coherent Fractions vs. Q₄

Low K_{T4}

High K_{T4}

- Coherent fraction is fairly stable with Q_4 .
- Systematics dominated by - + residual correlation.

3-pions (C_3^{QS}) : Minima vs. Q_3

- Coherent fraction is fairly stable with Q_4 .
- Systematics dominated by - + residual correlation.

Isolation of 2-pion Quantum Statistics (QS)

Quantity of Interest

$$N_{2}(p_{1}, p_{2}) = f_{21}N_{1}(p_{1})N_{1}(p_{2}) + f_{22}K_{2}(q_{12})N_{2}^{QS}(p_{1}, p_{2})$$

Sinyukov et al., Phys. Lett. B 432, 249 (1998)

 f_{22} estimated to be 0.7 +- 0.05 for this analysis $f_{21} = 1 - f_{22}$

f₂₂ previously estimated in ALICE 2014 PRC 89 024911 (2014)

Isolation of 3-pion QS

ALICE 2014 PRC 89 024911 (2014) Quantity of Interest

 $N_{3}(p_{1}, p_{2}, p_{3}) = f_{31}N_{1}(p_{1})N_{1}(p_{2})N_{1}(p_{3})$ $+ f_{32}N_{2}(p_{1}, p_{2})N_{1}(p_{3})$ $+ f_{33}K_{3}(q_{12}, q_{13}, q_{23})N_{3}^{QS}(p_{1}, p_{2}, p_{3})$

f coefficients derived in the core/halo picture as:

$$f_{31} = (1 - f_c)^3 + 3f_c(1 - f_c)^2 - 3(1 - f_c)(1 - f_c^2)$$

$$f_{32} = 3(1 - f_c)$$

$$f_{33} = f_c^3$$

 $f_c^2 =$ "lambda" = 0.7 +- 0.05 (fraction of correlated pairs)

Systematics Checked

Those which pertain to both measured and built C_4^{QS}

Systematics are Q₄ dependent

- - vs. + pions 0.1%.
- TPC B field orientation negligible.
- Tracking efficiency 0.4% at low Q₄.
- variation of f_c^2 (pair dilution). Default = 0.7, tried 0.65 and 0.75 - 6% at low Q₄
- Momentum resolution corrections 1% at low Q₄
- Muon correction uncertainties 2% at low Q₄.

High degree of correlation between <u>measured</u> and <u>built</u> C_4^{QS} for each of these variations.

Systematics Checked

<u>Measured</u> C_4^{QS} only

Systematics are Q₄ dependent

- <u>variation of f₄₁, f₄₂, f₄₃, f₄₄ from Therminator as compared to Core/</u> Halo prescription — 0.4% at high Q₄
- Residue of mixed-charge (- - +) cumulant 5%
- K₄ FSI factor 1% uncertainty at low Q₄. test of factorization: $K_4 = K_2^{12} K_2^{13} K_2^{14} K_2^{23} K_2^{24} K_2^{34}$

These systematics are the least understood sources of uncertainties. Future studies may reveal smaller values.

Systematics Checked

<u>Built</u> C_4^{QS} only

Systematics are Q₄ dependent

- Interpolator of 2-particle weights $(C_2-1 = T_{ij}) 0.7\%$ at low Q₄. Cubic interpolation used in between bins of q_{out}, q_{side}, q_{long} by default. Linear interpolation used as a variation.
- 2-particle weight problem at high q_{inv}
- Statistical fluctuations at high q_{inv} can give a negative T_{ij} which is not allowed in theory (Bose-Einstein correlations are positive). In these cases Tij is set to zero.
- 0.3% at high Q₄, Low K_{T4}
- -4% at high Q₄, High K_{T4}

Equations to Build QS correlations with coherence, $R_{coh}=0$

$$C_2^{QS} - 1 = 2G(1 - G)T_{12} + (1 - G)^2 T_{12}^2$$

$$\begin{array}{rcl} C^{QS}_{3}-1 &=& 2G(1-G)(T_{12}+T_{13}+T_{23})+(1-G)^2(T^2_{12}+T^2_{13}+T^2_{23})\\ &+& 2G(1-G)^2(T_{12}T_{13}+T_{12}T_{23}+T_{13}T_{23})+2(1-G)^3(T_{12}T_{13}T_{23})\\ C^{QS}_{4}-1 &=& 2G(1-G)(T_{12}+T_{13}+T_{14}+T_{23}+T_{24}+T_{34})\\ &+& (1-G)^2(T^2_{12}+T^2_{13}+T^2_{14}+T^2_{23}+T^2_{24}+T^2_{34})\\ &+& 2G(1-G)^3(T_{12}T^2_{34}+T^2_{12}T_{34}+T_{13}T^2_{24}+T^2_{13}T_{24}+T_{14}T^2_{23}+T^2_{14}T_{23})\\ &+& 2G(1-G)^2(T_{12}T_{13}+T_{12}T_{23}+T_{13}T_{23}+T_{12}T_{14}+T_{12}T_{24}+T_{14}T_{24})\\ &+& 2G(1-G)^2(T_{12}T_{13}+T_{12}T_{23}+T_{13}T_{23}+T_{12}T_{14}+T_{12}T_{24}+T_{14}T_{24})\\ &+& 2G(1-G)^2(T_{12}T_{13}T_{23}+T_{12}T_{14}T_{24}+T_{13}T_{14}T_{34}+T_{23}T_{24}T_{34})\\ &+& 2G(1-G)^3(T_{12}T_{13}T_{23}+T_{12}T_{14}T_{24}+T_{13}T_{14}T_{34}+T_{23}T_{24}T_{34})\\ &+& 2G(1-G)^3(T_{12}T_{13}T_{34}+T_{12}T_{34}T_{24}+T_{12}T_{24}T_{13}+T_{13}T_{24}T_{34})\\ &+& 2G(1-G)^3(T_{12}T_{13}T_{24}+T_{12}T_{34}T_{24}+T_{12}T_{24}T_{13}+T_{13}T_{24}T_{34})\\ &+& 2G(1-G)^3(T_{12}T_{13}T_{24}+T_{12}T_{34}T_{24}+T_{12}T_{24}T_{13}+T_{13}T_{24}T_{34})\\ &+& 2G(1-G)^3(T_{12}T_{13}T_{24}+T_{12}T_{34}T_{24}+T_{12}T_{24}T_{13}+T_{13}T_{24}T_{24})\\ \end{array}$$

G = coherentfraction of pions

Weiner et al. Int.J.Mod.Phys.A. 26 4577 (1993)

T. Csorgo. Heavy Ion Phys. 15 1 (2002)

Full 4-pion Quantum Interference Diagrams

T. Csorgo Heavy Ion Physics **15** 1-80

Therminator2 calculations of 0-5% Pb-Pb 2- and 3-pion Bose-Einstein correlations

Gaussian fits in red. R_{inv,3} smaller than R_{inv} by ~0.6 fm (6%). Therminator 2 model: Kisiel et al., Comput. Phys. Commun. 174, 669 (2006)

Therminator2 calculations of 0-5% Pb-Pb 2- and 3-pion Bose-Einstein correlations

Edgeworth fits in red. Rinv,3 similar to Rinv within ~0.3 fm (3%). Comput. Phys. Commun. 174, 669 (2006)

3-pion Correlation Functions in Pb-Pb

ALICE PRC 89 024911 (2014)

Measure of coherent fraction by comparing 3-pion to 2-pion correlation strength

 $=\frac{c_3(q_{12},q_{23},q_{31})-1}{\sqrt{(C_2(q_{12})-1)(C_2(q_{13})-1)(C_2(q_{23})-1)}}$

All Correlations are first Coulomb corrected.

r₃ is consistent with 2.0. Intercept is consistent with **0% coherence at high p**_T

> ALICE PRC 89 024911 (2014)

PRC 89 024911 (2014)

Quadruplet Fractions in Therminator

